por sauloandrade » Sáb Dez 29, 2012 21:07
Boas pessoal, me deparei com o seguinte problema e não estou conseguindo resolver. Gostaria de pedir a ajuda de vocês para dizer-me onde eu estou errando.
"O Ângulo ADC de um polígono regular ABCDEf...mede 30°.Determine a soma dos ângulos internos desse polígonos.
Então, fiz da seguinte maneira:
Sabemos que Soma dos ângulos internos é:

. Sabemos ainda que o polígono é regular então, se eu pegar a soma dos ângulos internos e dividir pelo número de lados eu obterei a medida de cada ângulo interno.

resolvendo teremos

.
Me quebrei ai, pois o n não pertence ao conjunto dos inteiros.
Onde estou errando? ;-;
-
sauloandrade
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Out 28, 2012 12:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Dom Dez 30, 2012 11:30
Bom dia .Há um erro no enunciado ,certo ? Você realmente quer achar a soma dos ângulos ineternos ou apenas obter o valor correspondente a este ângulo interno ?
Se for apenas a soma interna destes ângulos , basta aplicar a fórmula

. Como o polígono é regular e, é constituido pelos vertices

,ou seja é um hexagono , possui 6 lados .
Segue que ,

.
Não conseguir compreender sua solução , poderia explicar como chegou a esta conclusão

? comente qualquer coisa .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por sauloandrade » Dom Dez 30, 2012 14:44
Olá santhiago.
O polígono não é um hexágono, pois pelo enunciado, ele é formado pelos vértices ABCDEF... Há uma reticência que significa que o polígono é formado por n vértices, e eu preciso determinar o valor de n para obter a soma dos ângulos internos.
Sobre minha resolução deixa eu explicar com exemplos:
Como eu disse, se eu pegar a soma dos ângulos internos de um polígono REGULAR e dividir por n eu terei o valor de cada ângulo interno. Pegue por exemplo, o quadrado. Sabemos que a soma dos ângulos internos é 360°e possui 4 lados. Dividindo a soma dos ângulos internos (360°) pelo número de lados (4), eu obterei o valor de cada ângulo interno do polígono, no caso 4 ângulos de 90°.
Então aplicando o mesmo raciocínio, teremos:

resolvendo n=2,4.
Isso não é possível, pois não existe polígono com número de lado 2,4. rs.
é ficou confuso por que eu não sei por fração no latex ai eu adiantei um pouco o cálculo, desculpa.
-
sauloandrade
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Out 28, 2012 12:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Dom Dez 30, 2012 16:14
Ok compreendo .
Nosso objetivo é obter o número de lados ,para calcular a soma interna dos ângulo .
Obs.: Tome cuidado , o ângulo

ser igual a

não implica que cada ângulo interno é igual

.
Observe a figura .
Vamos supor que cada ângulo interno meça

.
Pela nossa hipótese ,

.
Veja a figura como ilustração . Estou supondo que

,mas não necessariamente é verdade .
No triângulo

. Temos

.
No triângulo

.Temos

.
Mas para cada triângulo ,

.Temos que ,
Assim ,

.
Lembrando que ,

implica

.
Conclusão ,
Temos por um lado que ,

. Entretanto por outro lado ,

(n-vezes)
logo ,

.
Resolvendo encontrará

.
Portanto ,

.
Espero que estar certo . Comente qualquer coisa , tem gabarito ? .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por sauloandrade » Dom Dez 30, 2012 17:34
Ahhh obrigado santhiago. Meu erro foi pensar que 30° seria um ângulo interno, o que não é verdade.
Sua resposta bate com o gabarito sim, obrigado

-
sauloandrade
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Out 28, 2012 12:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Dom Dez 30, 2012 17:51
Quando deparar com exercícios como este é importante fazer o desenho . Se permanecer dúvida só postar algo .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Ângulos internos do trapézio]
por Gustavo Gomes » Qua Dez 19, 2012 22:37
- 1 Respostas
- 1329 Exibições
- Última mensagem por timoteo

Qui Dez 20, 2012 00:47
Geometria Plana
-
- [Trigonometria]Ângulos Internos
por ALPC » Seg Jul 01, 2013 14:33
- 2 Respostas
- 2113 Exibições
- Última mensagem por ALPC

Seg Jul 01, 2013 15:33
Trigonometria
-
- Angulos internos de um triangulo.
por albtec01 » Sáb Abr 12, 2014 19:19
- 0 Respostas
- 973 Exibições
- Última mensagem por albtec01

Sáb Abr 12, 2014 19:19
Trigonometria
-
- furg- os números que expressam angulos internos
por Natalie » Sex Set 16, 2011 18:30
- 1 Respostas
- 1602 Exibições
- Última mensagem por MarceloFantini

Sex Set 16, 2011 18:45
Progressões
-
- Calculo dos angulos internos dum triangulo hiperbólico
por Jhenrique » Ter Jul 24, 2012 18:42
- 0 Respostas
- 1746 Exibições
- Última mensagem por Jhenrique

Ter Jul 24, 2012 18:42
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.