• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria - ajuda por favor

Geometria - ajuda por favor

Mensagempor Janffs » Sex Dez 28, 2012 15:07

Um triângulo retângulo, cujos lados medem x; x+1; x/2 tem área, em u.a., igual a:

Já tentei resolver de algumas maneiras, mas nenhuma chegou a resposta.....se alguém conseguir resolver para mim e me explicar como chegou a resposta eu
agradeço!
Janffs
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Nov 15, 2012 16:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Geometria - ajuda por favor

Mensagempor young_jedi » Sex Dez 28, 2012 17:32

se é um triangulo retangulo então voce pode aplicar pitagoras, dos tres valores x+1 e o maior portanto é a hipotenusa então

(1+x)^2=\left(\frac{x}{2}\right)^2+x^2

tente resolver esta equação e econtrar o valor de x, comente as duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}