• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Primitivas de funções racionais

Primitivas de funções racionais

Mensagempor rodrigonapoleao » Seg Dez 17, 2012 14:51

Não entendo nada de primitivação de funções racionais. Alguém me pode iluminar?
Como eu primitivo a seguinte função racional f(x)= \frac{{2x}^{3}}{{x}^{4}-1}} ?

Muito obrigado
rodrigonapoleao
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Nov 19, 2012 14:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: Primitivas de funções racionais

Mensagempor young_jedi » Ter Dez 18, 2012 10:25

faça a seguinte substituição

u=x^4-1

du=4x^3.dx

\frac{du}{4}=x^3.dx

substituindo na integral

\int\frac{2}{4.u}du

\frac{1}{2}\int\frac{1}{u}du

fazendo a intgral

\frac{1}{2}.ln(u)+C

\frac{1}{2}ln(x^4-1)+C
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.