• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral dupla, área.

Integral dupla, área.

Mensagempor ricardosanto » Qui Dez 13, 2012 18:21

Calcule a área da região R de intercessão das curvas, y=0, y=x²-x e x=1

y=y portanto
x²-x=0
x(x-1)=0
x-1=0
x=1 e x=0
como o x varia de 0 a 1, devo integrar primeiro em relação a variavel y (usando os limites 0 e x²-x)
mas não sei como passar daí.
obrigado
ricardosanto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Seg Abr 16, 2012 12:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando

Re: Integral dupla, área.

Mensagempor Russman » Qui Dez 13, 2012 20:40

Você pode calcular a área por

A = \int_{x_1}^{x_2}\int_{y_1}^{y_2}dydx.

Como você preveu os valores de x variam de x_1=0 até x_2 = 1. E y vai de y_1 = 0 até y=x^2-x. Assim,

A = \int_{0}^{1}\int_{0}^{x^2-x}dydx = \int_{0}^{1}\left [y  \right ]_{0}^{x^2-x}dx = \int_{0}^{1}\left [ x^2-x-0 \right ]dx = \int_{0}^{1}\left (x^2-x  \right ) dx

Basta integrar normalmente.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)