• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema envolvendo desconto comercial simples

Problema envolvendo desconto comercial simples

Mensagempor Ju_Petrokis » Qua Set 16, 2009 20:00

Olá estimados usuários e professores.
Gostaria imensamente de pedir auxílio sobre um problema passado na Faculdade, cuja resolução nenhum aluno conseguiu entender e a professora não está inclinada a nos responder de forma esclarecedora. Ela nos forneceu a resposta, porém, gostaríamos de uma justificativa, pois não concordamos com a mesma. Segue abaixo o problema, e a resolução da maioria dos alunos.

"Descontei duas notas promissórias de valores diferentes, cuja a soma é de R$ 500.000,00, usando a taxa de 7% a.m, de desconto comercial simples. Uma era vencível em 36 dias, a outra em 48 dias. O total dos descontos foi de R$ 38.000,00. O maior valor nominal dentre os referidos títulos é:"

Resolução da maioria:
N1 + N2 = 500.000 --> N2= 500.00- N1
D= 38.000 --> D1 + D2 = 38.000 --> D1+D2 = (N1 . i . n1) + (N2 .i .n2)

36 dias = 1,2 meses
48 dias = 1,6 dias
7% = 0,07

38.000= (N1 . 0,07 . 1,2) + (N2 . 0,07 . 1,6)
38.000= 0,084N1 + 0,112N2

substituindo :
38.000 = 0,084N1 + (0,112 . (500.000 -N1))
38.000= 0,084 + 56.000 - 0,112 N1 --> -56.000+ 38.000= - 0,028
N1= 642.857,14

Logo N2 daria = 142.857,14

Bom, nossa resposta não é coerente com os dados do exercício, tendo em vista que a soma das notas é 500.000, e o nosso resultado ultrapassa esse valor.

A resposta que a professora nos deu foi que a nota de maior valor é R$ 357.142,86.
Esta é a resolução da professora:

N1 + N2 = 500.000
N1= 500.000 – N2
dc1 + dc2 = 38.000

48/ 30 = 1,6
36/ 30 = 1,2
38.000 = N1 x 0,07 x 1,2+ N2 x 0,07 x 1,6
38.000 = 0,084 N1 + 0,112 N2
38.000 = 0,084 (500.000 – N2) + 0, 112 N2
38.000 = 42.000 – 0,084 N2 + 0,112 N2
4.000 = 0,028 N2
N2 = 142.857,15
N1= 500.000 – N2
N1 = 500.000 - 142.857,15
N1 = 357.142,85
Gostaríamos de entender como a conta delas deu positiva...? Na última passagem, antes do resultado de N2 já é visível que a resposta é negativa..., ela “comeu” o sinal de menos. Já perguntei para ela, mas a mesma diz que “a resolução é esta”.


Mesmo que fosse esse valor, acreditamos não estar certo, pois ao calcular os valores de desconto, os mesmos ultrapassam R$ 38.000...

Eu e meu grupo gostaríamos que os colaboradores deste fórum pudesse nos explicar a lógica da professora....,
Muito grata!!!
E obrigada pela oportunidade!!
Ju_Petrokis
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Set 16, 2009 19:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnologia em Gestão Financeira
Andamento: cursando

Re: Problema envolvendo desconto comercial simples

Mensagempor Victor Emanuel » Qui Set 24, 2009 15:30

O enunciado do problema apresentado contém uma informação inconsistente: D1 + D2 = 38.000
Por isto, se a professora houvesse resolvido corretamente o sistema resultante do enunciado, encontraria realmente um valor nominal negativo. O que, convenhamos, é um absurdo !
Um valor que tornaria possível uma solução positiva para o problema seria, por exemplo: D1 + D2 = 50.400.
Daí, teríamos a seguinte solução:
| N1 + N2 = 500000
| D1 + D2 = 50400
i1 = i2 = 7% a.m. = 0,07 a.m.; n1 = 36 dias = 1,2 meses e n2 = 48 dias = 1,6 meses
Sabemos que: D1 = N1.i1.n1 --> D1 = N1 x 0,07 x 1,2 --> D1 = 0,84 N1
D2 = N2.i2.n2 --> D2 = N2 x 0,07 x 1,6 --> D2 = 1,12 N2
Então:
| N1 + N2 = 500000 --> - 0,084 N1 - 0,084 N2 = - 42000 (1)
| 0,084 N1 + 0,112 N2 = 50400 (2)
Daí,: (1) + (2) --> 0,028 N2 = 8400 --> N2 = $ 300.000,00
Deseja ter à disposição um bom material para estudar Matemática, especialmente Matemática Financeira ? Visite meu site: http://victoremanuel.com.br. É grátis.
Depois de 45 anos de praia estou liberando gratuitamente tudo o que escrevi. Dê-me, depois sua opinião a respeito.
Victor Emanuel
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Set 24, 2009 14:27
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.