por Jhenrique » Sex Dez 07, 2012 20:50
Seja

uma função qualquer e diferenciável...
Como

, então:

E como


(a grosso modo... pq estou ignorando os índices de

)
Derivando a igualdade mais uma vez e isolado

, eu
acho que fica assim:

Eu tenho algumas perguntar para fazer com relação a essa manipulação:
i)

sei que significa

e que

significa

. Ok! Mas que raios esta entidade algébrica,

, significa?
Por exemplo, eu ñ sei isolar o

em nenhum dos lados da seguinte igualdade,

, pq ñ sei o que é esse tal de

.
ii) Se é possível isolar o

nas equações acima, e é, pelo menos é com relação a função linear, então como posso isolar o

em

?
iii) A pergunta ii) me fez pensar se existe um inverso para o somatório, isto é, um "diferenciatório" ?
Grato!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
por Russman » Sáb Dez 08, 2012 02:18
A via de definição

.
Isto é,

é uma variação da grandeza

tão pequena quanto tu queiras, ou precise, que ela seja!
Agora a notação

sugere que

de forma que, como esperado, represente uma variação MUITO pequena( tanto quanto tu queiras) na própria variação MÍNIMA da grandeza

. O conceito de
aceleração depende desta variação da variação!
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por MarceloFantini » Sáb Dez 08, 2012 02:37
O problema de querer interpretar

é que quando falamos de formas diferenciais, existe o Lema de Poincaré que diz que

, ou seja, o operador diferencial é nilpotente.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Jhenrique » Seg Dez 10, 2012 17:45
Conclusão... para a pergunta de i) ñ é possível isolar o

em

e para ii) e iii) a resposta é:
não!Isso msm?
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
por Jhenrique » Seg Dez 17, 2012 12:51
Up!?
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Cálculo 1] Manipulação de função
por Larissa28 » Ter Mar 24, 2015 23:54
- 2 Respostas
- 2424 Exibições
- Última mensagem por Larissa28

Qua Mar 25, 2015 19:47
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo 1] Manipulação de função
por Larissa28 » Dom Set 27, 2015 22:24
- 7 Respostas
- 5836 Exibições
- Última mensagem por adauto martins

Qua Set 30, 2015 17:19
Sequências
-
- [Manipulação de Proporções]
por Tatasacchi_123 » Seg Abr 08, 2013 13:12
- 1 Respostas
- 2388 Exibições
- Última mensagem por DanielFerreira

Seg Abr 08, 2013 17:04
Funções
-
- [Problema] Dificuldade com manipulação de fórmulas
por FilipeMSoares » Sex Mai 24, 2019 19:35
- 0 Respostas
- 5801 Exibições
- Última mensagem por FilipeMSoares

Sex Mai 24, 2019 19:35
Trigonometria
-
- [Calculo]Alguém me ajuda nessa questão de calculo pfv.
por moeni » Seg Abr 04, 2022 21:54
- 0 Respostas
- 6197 Exibições
- Última mensagem por moeni

Seg Abr 04, 2022 21:54
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.