• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral]Integral Definida.

[Integral]Integral Definida.

Mensagempor guisaulo » Seg Dez 10, 2012 14:56

Estive tentando fazer esse exercício, porém não consegui resolver até um certo ponto.
Abaixo tá o comando da atividade e a minha resolução.
Queria que alguém me ajudasse a resolve-lo e corrigir alguma falha de calculo.



Calcule \int_{1}^{e}\sqrt[]{1+{(\frac{dx}{dy}})^{2}}dy, em que x=\frac{1}{4}{y}^{2}+\frac{1}{2}ln(y).

Primeiro eu calculei a derivada de x:
\frac{dx}{dy}=\frac{1}{4}{y}^{2}+\frac{1}{2}ln(y) = \frac{y}{2}+\frac{1}{2y}

Depois eu substitui na equação da integral:
\int_{1}^{e}\sqrt[]{1+{(\frac{y}{2}+\frac{1}{2y}})^{2}}dy
\int_{1}^{e}\sqrt[]{1+{(\frac{y^2}{4}+\frac{1}{4y^2}})}dy

Não achei uma maneira para calcular a integral a partir daqui.
guisaulo
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Nov 27, 2012 21:14
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59