• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Me ajudem a entender esta resolução

Me ajudem a entender esta resolução

Mensagempor Valmel » Sex Dez 07, 2012 11:11

Escrevendo-se a série natural dos números inteiros,sem separar os algarismos,qual é o 500º algarismo escrito.


Eu não entendi a partir dos 3 algarismos,os 311.Por que ele usa o 309?A partir daí não entendi do jeito que ele explicou,peço ajuda de um colaborador,pois da forma como explicam,eu entendo.
Gabarito:0


Resolução:

Com 1 algarismo: 1 a 9: são 9 números e 9.1 = 9 algarismos.
# Com 2 algarismos: 10 a 99: são (99-10+1 = 90) números e 90.2 = 180 algarismos.
Assim sendo, temos até aqui 189 algarismos, portanto para o 500° faltam 500 - 189 = 311 algarismos. A partir daqui, cada número terá 3 algarismos, se usarmos 309 algarismos, teríamos 309÷3 = 103 números. Do 100 ao 202 são (202-100+1 = 103) números.

Isso quer dizer que ao escrevermos a seqüencia, quando chegamos em 202, já usamos 9+180+309 = 498 algarismos, assim faltam dois algarismos. O próximo número seria 203, mas só temos 2 algarismos, então o último a ser escrito seria o zero (0).
Valmel
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qui Set 27, 2012 17:59
Localização: Ceará
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Me ajudem a entender esta resolução

Mensagempor DanielFerreira » Sáb Dez 08, 2012 18:28

1 à 9 = (9 - 1 + 1) X 1 = 9 algarismos

10 à 99 = (99 - 10 + 1) X 2 = 180 algarismos

100 à 999 = (999 - 100 + 1) X 3 = 2.700 algarimos

note que ao efetuar a soma acima, iremos obter 2.889 algarismos. Essa soma nos dá a posição do algarismo, portanto:


1 à 9 = (9 - 1 + 1) X 1 = 9 algarismos

10 à 99 = (99 - 10 + 1) X 2 = 180 algarismos

100 à k = (k - 100 + 1) X 3 = 3(k - 99) algarismos
--------------------------------------------------------------
9 + 180 + 3(k - 99) = 500
189 + 3k - 297 = 500
3k = 608
k = 202,6

Valmel,
saiba que se a divisão fosse exata, ou seja, se k = 202, teríamos como nº ocupante da posição 500ª o 202, portanto o algarismo 2 (último), veja:
498ª = 2
499ª = 0
500ª = 2


Podemos concluir que as posições são dadas por:

...
500ª =====> 3k = 608
501ª =====> 3k = 609 ===================> k = 203
502ª =====> 3k = 610
...

Uma vez que, k = 203, o raciocínio é análogo ao anterior.
Como a divisão é exata, ou seja, se k = 203, temos como nº ocupante da posição 501ª o 203, portanto o algarismo 3 (último), veja:
499ª = 2
500ª = 0
501ª = 3

Comente qualquer dúvida!

Daniel F.











Comente qualquer dúvida!

Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}