• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(integral) função exponencial

(integral) função exponencial

Mensagempor manuel_pato1 » Sex Dez 07, 2012 20:08

I = \int_{} \frac{e^{tg(x)}}{(1+x^2)} dx

Chamei de u = sin(x)/ cos(x) , logo, du/dx = 1/ cos²(x)

Daí eu meio que empaquei, pois não consigo fazer alguma relação trigonométrica com o '' 1 + x²'' do denominador

Alguém pode me ajudar? Abração
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: (integral) função exponencial

Mensagempor young_jedi » Sáb Dez 08, 2012 12:16

só uma duvida a exponecial é realmente de tangente ou de tg^{-1}x
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: (integral) função exponencial

Mensagempor Russman » Sáb Dez 08, 2012 13:36

Se fosse e^{tg^{-1}x} sairia muito mais fácil essa integral!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: (integral) função exponencial

Mensagempor manuel_pato1 » Sáb Dez 08, 2012 13:56

Desculpem, o correto é: e^{atg(x)}

também achei estranho, essa integral faz parte de uma lista que meu professor passou, mas acho que está errada.

Pois é, se fosse elevado na -1, daria pra fazer mais tranquilamente.

a respota é: e^{arctan(x)}+ C
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: (integral) função exponencial

Mensagempor manuel_pato1 » Sáb Dez 08, 2012 13:58

acho que esse atg(x) ele quis dizer arctg(x)
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: (integral) função exponencial

Mensagempor Russman » Sáb Dez 08, 2012 14:04

Então, perfeito. Só pra esclarecer tg^{-1}(x) \equiv arctg(x), ok?.

Agora, faça u = arctg(x). Assim, \frac{\mathrm{d} u}{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}arctg(x) = \frac{1}{1+x^2} \Rightarrow dx = (1+x^2)du. Portanto

\frac{e^{arctg(x)}}{(1+x^2)}dx = \frac{e^{u}}{1+x^2}.(1+x^2)du = e^u du

Agora integre trivialmente em u e faça a substituição contrária para expressar o resultado em termos de x.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: (integral) função exponencial

Mensagempor manuel_pato1 » Sáb Dez 08, 2012 15:02

Muito obrigado, Russman.
Consegui resolver, e bateu com o resultado.
Tô começando a matéria agora, então estou com umas dúvidas nessas integrais um pouco mais complicadinhas.
Abraço.
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)