• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida com relação a integral

Duvida com relação a integral

Mensagempor MarceloRocks » Seg Dez 03, 2012 11:31

Pessoal,

Alguem pode corrigir um exercicio de integral que eu fiz de integral?

Segue abaixo:
\int\left(1 - t \right)\left(2 + {t}^{2} \right) dt =

\int 2 + {t}^{2} -2t -{t}^{3}dt =

2t + \frac{{t}^{3}}{3} - \frac{2{t}^{2}}{2} - \frac{{t}^{4}}{4} =

2t + \frac{{t}^{3}}{3} - {t}^{2} - \frac{{t}^{4}}{4}
MarceloRocks
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Dez 03, 2012 00:41
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: cursando

Re: Duvida com relação a integral

Mensagempor young_jedi » Seg Dez 03, 2012 15:54

esta certo a unica coisa que com é um integral indefinida tem uma constante no final

2t+\frac{t^3}{3}-t^2-\frac{t^4}{4}+c

mais esta certo sim sua resolução
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}