por RafaelPereira » Dom Dez 02, 2012 20:36
-
RafaelPereira
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Dom Dez 02, 2012 17:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por e8group » Dom Dez 02, 2012 22:05
Note que ,

.
Reescrevendo a equação da seguinte forma ,

.
Multiplicando ambos lados por ,

. Vamos obter ,

.
Uma vez que as bases são iguais (e fixas) temos que seus respectivos expoentes são iguais ,então :

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por RafaelPereira » Seg Dez 03, 2012 00:50
Obrigado santhiago, pois pela sua resposta acabei percebendo qual foi o ponto em que eu estava errando e fazendo com que eu não achasse a solução.
Eu estava escrevendo a expressão
![{\left(\sqrt[5]{0,1296} \right)}^{2x} {\left(\sqrt[5]{0,1296} \right)}^{2x}](/latexrender/pictures/8b5f81037744529f248b690f595f9473.png)
, da forma
![{\left(\sqrt[5]{\frac{1296}{1000}} \right)}^{2x} = {\left(\sqrt[5]{\frac{{2}^{4}.{3}^{4}}{{2}^{3}.{5}^{3}}} \right)}^{2x} {\left(\sqrt[5]{\frac{1296}{1000}} \right)}^{2x} = {\left(\sqrt[5]{\frac{{2}^{4}.{3}^{4}}{{2}^{3}.{5}^{3}}} \right)}^{2x}](/latexrender/pictures/88e8d5d99596ada8e194968b8c6c4410.png)
,o que está errado. A forma correta é
![{\left(\sqrt[5]{\frac{1296}{10000}} \right)}^{2x} = {\left(\sqrt[5]{\frac{{2}^{4}.{3}^{4}}{{2}^{4}.{5}^{4}}} \right)}^{2x} = {\left(\sqrt[5]{\frac{{3}^{4}}{{5}^{4}}} \right)}^{2x} = {\left[\sqrt[5]{{\left(\frac{9}{25} \right)}^{2}} \right]}^{2x} {\left(\sqrt[5]{\frac{1296}{10000}} \right)}^{2x} = {\left(\sqrt[5]{\frac{{2}^{4}.{3}^{4}}{{2}^{4}.{5}^{4}}} \right)}^{2x} = {\left(\sqrt[5]{\frac{{3}^{4}}{{5}^{4}}} \right)}^{2x} = {\left[\sqrt[5]{{\left(\frac{9}{25} \right)}^{2}} \right]}^{2x}](/latexrender/pictures/a0a8e8b1d05c31c88f090263499d4574.png)
.
Agora refiz os cálculos e bateu exatamente com o que você disse.
Vlw. Muito Obrigado.
-
RafaelPereira
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Dom Dez 02, 2012 17:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação com Radical
por LAYLA » Qui Jun 07, 2018 21:14
- 1 Respostas
- 13586 Exibições
- Última mensagem por Gebe

Sáb Jun 09, 2018 10:28
Sistemas de Equações
-
- [função exponencial] Uma dúvida sobre equações exponenciais.
por amyss » Qui Jul 05, 2012 22:37
- 1 Respostas
- 1287 Exibições
- Última mensagem por Russman

Qui Jul 05, 2012 23:06
Funções
-
- Duvida Op. Radical
por Andrewo » Seg Mar 05, 2012 11:09
- 1 Respostas
- 1953 Exibições
- Última mensagem por MarceloFantini

Seg Mar 05, 2012 13:13
Álgebra Elementar
-
- Radical Duplo
por Rafael16 » Seg Jan 21, 2013 20:40
- 2 Respostas
- 3658 Exibições
- Última mensagem por Rafael16

Seg Jan 21, 2013 20:53
Aritmética
-
- Radical duplo
por Maria Livia » Sex Fev 22, 2013 00:10
- 1 Respostas
- 14203 Exibições
- Última mensagem por DanielFerreira

Sex Fev 22, 2013 01:11
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.