• Anúncio Global
    Respostas
    Exibições
    Última mensagem

paralelepipedo

paralelepipedo

Mensagempor Gir » Ter Set 22, 2009 10:41

A soma das medidas das arestas de um paralelepipedo reto retangulo e 48 m.As dimensoes sao numeros inteiros consecutivos.O volume do paralelepipedo,em metros cubicos,e:
a)50 b)75 c)120 d)40 e)60


a+b+c=48
por tentativa:a=15,b=16 e c=17 .
a soma deles da 48,mas na hora de axar o volume a multiplicaçao da 4.080 !
por favor me ajudem
Gir
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Qui Jul 02, 2009 17:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: paralelepipedo

Mensagempor Dan » Ter Set 22, 2009 13:05

Oi Gir.

Não sei se o meu raciocínio está certo...

Mas eu pensei o seguinte:

Existem 3 medidas, e 4 arestas para cada medida. Portanto, tem que ser 4a+4b+4c=48.

Então, as arestas medem 3, 4 e 5. Pois 12 + 16 + 20 = 48. E 3 x 4 x 5 = 60.
Editado pela última vez por Dan em Ter Set 22, 2009 15:39, em um total de 1 vez.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: paralelepipedo

Mensagempor Gir » Ter Set 22, 2009 15:32

obrigada é isso msm = )
Gir
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Qui Jul 02, 2009 17:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}