por Sobreira » Ter Nov 27, 2012 16:38
Quando eu tenho uma função deste tipo:

Eu sei que o resultado é este:

Agora quando eu tenho:


Eu gostaria de saber se eu estou calculando (de forma implícita o valor de

que vai dar 1, ou seja,

) ou simplesmente não estou calculando o valor da derivada de x e obtendo direto o resultado.
"The good thing about science is that it's true whether or not you believe in it."
-
Sobreira
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Sex Out 12, 2012 17:33
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: formado
por MarceloFantini » Ter Nov 27, 2012 19:36
Você está obtendo direto o resultado da derivada. Eu já pensei nisso, e a conclusão é que se pensarmos que estamos derivando implicitamente

este raciocínio não pára, de tal forma que toda derivada seria zero, pois você derivaria uma constante sempre no final.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Sobreira » Ter Nov 27, 2012 22:25
Uma outra coisa que eu pensei também é o seguinte (não sei se está correto) no primeiro caso eu tenho uma função composta e então eu aplico a regra da cadeia:


Já no segundo caso como eu tenho uma função "simples":

Não sei se posso aplicar a regra da cadeia também!!
O que acha??
"The good thing about science is that it's true whether or not you believe in it."
-
Sobreira
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Sex Out 12, 2012 17:33
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: formado
por MarceloFantini » Ter Nov 27, 2012 22:27
Sim, você está correto: aplicamos a regra da cadeia apenas em funções compostas. A segunda função é elementar, portanto você já conhece sua derivada. Não existe regra da cadeia.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [derivada] derivada pela definição da secante
por TheKyabu » Sáb Out 27, 2012 23:24
- 2 Respostas
- 10632 Exibições
- Última mensagem por TheKyabu

Dom Out 28, 2012 11:44
Cálculo: Limites, Derivadas e Integrais
-
- Demonstração- secante
por mathsoliver » Seg Abr 13, 2015 12:32
- 1 Respostas
- 1613 Exibições
- Última mensagem por Cleyson007

Seg Abr 13, 2015 16:51
Equações
-
- seno e secante negativa
por Apotema » Seg Nov 23, 2009 14:36
- 2 Respostas
- 1872 Exibições
- Última mensagem por Apotema

Qua Nov 25, 2009 16:54
Trigonometria
-
- Função Secante e Cossecante
por gustavoluiss » Qui Jul 14, 2011 20:42
- 11 Respostas
- 5208 Exibições
- Última mensagem por gustavoluiss

Sáb Jul 16, 2011 15:19
Trigonometria
-
- [Cálculo] Integral da secante
por ARCS » Ter Ago 23, 2011 18:15
- 2 Respostas
- 8035 Exibições
- Última mensagem por LuizAquino

Ter Ago 23, 2011 23:02
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.