• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equações Diferenciais-Redução de Ordem uma ajudinha=)

Equações Diferenciais-Redução de Ordem uma ajudinha=)

Mensagempor Garota nerd » Dom Nov 25, 2012 23:59

Equações diferenciais, Alguém poderia me ajudar?
Resolva e equação diferencial(Equações sem a Variável Independente)
y"+y(y')³=0(Sugestão:faça u=y')
resposta: (1/3)y³-2c1y+c2=2t;também y=c
eu fiz o seguinte:
u=y'
u'=du/dx=dudy/dydx=udu/dy
u'=-yu³
udu/dy=-yu³
du/u²=-ydy
-u^-1=-y²dy/2
-1/u=-y²dy/2
1/u=y²dy/2
1/y'=y²dy/2
dx/dy=y²/2
2dx=y²dy
y²dy=2dx
apliquei integral e
y³/3=2xc1+c
y³/3-2c1x-c=0
y³/3-2c1x+c2 onde c2=-c
mas ainda não cheguei na resposta do livro=(
Alguém poderia me ajudar ?
Garota nerd
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Mai 03, 2011 17:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Equações Diferenciais-Redução de Ordem uma ajudinha=)

Mensagempor young_jedi » Seg Nov 26, 2012 14:50

voce chegou na seguinte expressão

\frac{du}{u^2}=-y.dy

integrando

-\frac{1}{u}=-\frac{y^2}{2}+k

então

(y^2-2k)u=2

como u=y'

(y^2-2k)\frac{dy}{dt}=2

(y^2-2k)dy=2.dt

\frac{y^3}{3}-2ky+c=2t
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Equações Diferenciais-Redução de Ordem uma ajudinha=)

Mensagempor Garota nerd » Seg Nov 26, 2012 23:32

Obrigada, você é uma anjo =)
Garota nerd
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Mai 03, 2011 17:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?