• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada]

[Derivada]

Mensagempor spektroos » Sáb Nov 24, 2012 23:40

f(x)= {x}^{2}{e}^{3x^3}

Eu nao entendi como resolve a derivada da segunda funcao, ela ficaria: 9{e}^{9x}^{2} ?
spektroos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Seg Set 24, 2012 01:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Civil
Andamento: cursando

Re: [Derivada]

Mensagempor e8group » Dom Nov 25, 2012 00:17

Faça 3x^3 =  u .Daí , f'(x)  =  (x^2 e^u)'  =    2 xe^u  +   e^u u' x^2      =  2xe^{3x^3}  +  e^{3x^3} 9x^2 \cdot x^2  = e^{3x^3} (2x  + 9x^4) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Derivada]

Mensagempor spektroos » Dom Nov 25, 2012 02:41

Obrigado, pela resposta, me esclareceu bastante coisa.
spektroos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Seg Set 24, 2012 01:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}