• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[ Integral ] Indireta

[ Integral ] Indireta

Mensagempor Paraujo » Qua Nov 21, 2012 20:35

Fala Galera!

Estou fazendo algumas deduções de Eletromagnetismo, e cheguei numa integral onde não consegui desenvolver:

\int_{}^{}\frac{dx}{{({a}^{2}+{x}^{2})}^{\frac{3}{2}}}

A dica nesse caso é que estamos tratando de um triângulo, onde eu posso substituir alguns termos:

\frac{x}{a} = tan \theta

Consegui encontrar uma identidade trigonométrica nessa transformação:

{sec}^{2}\theta = 1 + {tan}^{2}\theta

Depois daí eu não desenvolvi muita coisa...

Obrigado pela atenção,

Paulo
Paraujo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Set 23, 2012 21:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão
Andamento: cursando

Re: [ Integral ] Indireta

Mensagempor MarceloFantini » Qua Nov 21, 2012 23:50

Fazendo a substituição x= a \tan \theta segue que

(a^2 + x^2)^{\frac{3}{2}} = (a^2 + a^2 \tan^2 \theta)^{\frac{3}{2}}

= a^3 (1 + \tan^2 \theta)^{\frac{3}{2}} = a^3 \sec^3 \theta

e

dx = a \sec^2 \theta\, d \theta.

Voltando à integral temos

\int \frac{dx}{(a^2 + x^2)^{\frac{3}{2}}} = \int \frac{a \sec^2 \theta\, d \theta}{a^3 \sec^3 \theta}

= \frac{1}{a^2} \int \frac{d \theta}{\sec \theta} = \frac{1}{a^2} \int \cos \theta \, d \theta

= \frac{\sin \theta}{a^2} + C.

Como x = a \tan \theta, então x = a \frac{\sin \theta}{\cos \theta} e x^2 = a^2 \frac{\sin^2 \theta}{\cos^2 \theta} = a^2 \frac{\sin^2 \theta}{1 - \sin^2 \theta}, logo a^2 \sin^2 \theta = (1 - \sin^2 \theta) x^2 = x^2 - x^2 \sin^2 \theta.

Isolando \sin^2 \theta segue que \sin^2 \theta (a^2 +x^2) = x^2 e \sin^2 \theta = \frac{x^2}{a^2 + x^2}. Portanto \sin \theta = \frac{x}{\sqrt{a^2 + x^2}}.

Substituindo na resposta final,

\int \frac{dx}{(a^2 + x^2)^{\frac{3}{2}}} = \frac{x}{a^2 \sqrt{a^2 + x^2}} + C.

Você usou a substituição certa, só faltou prosseguir com as contas até o final. :y:
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [ Integral ] Indireta

Mensagempor Paraujo » Sex Nov 23, 2012 06:50

Perfeito Marcelo!!!

Muitissimo Obrigado!

Abraços :y:
Paraujo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Set 23, 2012 21:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.