• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Séries de TAylor e de Maclaurin

Séries de TAylor e de Maclaurin

Mensagempor Aprendiz2012 » Qui Nov 22, 2012 15:31

Desenvolver a função f(x)={e}^{2x} em série de Maclaurin: Diretamente.

no caso eu devo fazer u'.v+u.v'??


resposta:

{e}^{2x}=\sum_{n=0}^{\infty}=1+2x+\frac{{2}^{2}.{x}^{2}}{2!}+\frac{{2}^{3}.{x}^{3}}{3!}+...+\frac{{2}^{n}.{x}^{n}}{n!}+...
Aprendiz2012
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sáb Ago 11, 2012 18:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em química
Andamento: formado

Re: Séries de TAylor e de Maclaurin

Mensagempor MarceloFantini » Qui Nov 22, 2012 17:48

O que disse não faz sentido, não existe derivada da regra do produto aqui.

Basta usar a expansão de Taylor de e^k e substituir k = 2x para obter a resposta desejada.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Séries de TAylor e de Maclaurin

Mensagempor Aprendiz2012 » Qui Nov 22, 2012 20:24

tah .. essa forma aí aparentemente é a mais fácil.. mas essa daí é a questão "b".. na questão "a", a que eu postei, está pedindo pra resolver DIRETAMENTE
Aprendiz2012
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sáb Ago 11, 2012 18:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em química
Andamento: formado

Re: Séries de TAylor e de Maclaurin

Mensagempor MarceloFantini » Qui Nov 22, 2012 20:31

Pode ser que ele queira que você aplique a definição:

f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \frac{f^{(4)}(0)}{4!} x^4 + \cdots

Não é difícil, basta derivar e substituir.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.