• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Definida

Integral Definida

Mensagempor menino de ouro » Qua Nov 21, 2012 08:29

não entendi porque? não houve uma escolha de( u ) ,aqui, \int_{0}^{\Pi/2}sen2(x)cos3(x)dx

e resolvendo chega-se a , sen(2)cos(3)\int_{}^{}x^2dx aqui, nao entendi porque sen(2) e cos(3) virarão constantes?
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: Integral Definida

Mensagempor MarceloFantini » Qua Nov 21, 2012 10:58

Depende de como os parênteses devem ser colocados. A integral

\int_0^{\frac{\pi}{2}} \sin(2(x)) \cos (3(x)) \, dx

é diferente da integral

\int_0^{\frac{\pi}{2}} (\sin 2) \cdot (x) \cdot (\cos 3) \cdot (x) \, dx.

No primeiro caso temos a função seno do arco duplo com cosseno do arco triplo, enquanto que \sin 2 e \cos 3 são constantes.

Tenho a forte impressão que a integral que quer resolver é a primeira, e não a segunda.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integral Definida

Mensagempor menino de ouro » Qua Nov 21, 2012 15:07

realmente, no meu material aqui a questão não vem especificada ,na minha postagem abaixo eu que coloquei os parenteses,entaõ ,vou postar aqui do jeito que ela esta escrita,

\int_{0}^{\Pi/2}sen2xcos3xdx=


\int_{0}^{\Pi/2}sen2xcos3xdx=cos(3)sen(2)\int_{}^{}x^2\int_{0}^{\Pi/2}sen2xcos3xdx=cos(3)sen(2)\int_{}^{}x^2=\frac{x^3}{3}cos(3)sen(2)+c= - \frac{2}{5}

tem como me explicar passo a passo, como eu chego nessa resposta - \frac{2}{5}
eu não sei substituir quando trabalhamos com radianos?
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: Integral Definida

Mensagempor menino de ouro » Qua Nov 21, 2012 15:09

na postagem acima! no lugar de postagem abaixo.
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: Integral Definida

Mensagempor menino de ouro » Qua Nov 21, 2012 21:58

pessoal ,corrigindo tudo a questão postada anteriormente é:


\int_{0}^{\Pi/2}sen(2x)cos(3x)dx


desculpem na escrita!
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}