• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Potencia] Fuvest.

[Potencia] Fuvest.

Mensagempor replay » Seg Nov 19, 2012 16:58

Se 4^{16}.5^{25}= a . 10^{n}, com 1<=a<= 10, então n é igual a:

a)24
b)25
c)26
d)27
e)28

Eu estou em duvida como iniciar o exercicio, alguêm me da uma luz que eu termino ele aqui.
Acho que fazendo (2^{2})^{16} =2^{32} mas não sei oque simplificar no caso do 5^{25}

Edit:

Pensando aqui, o expoente n deve ser uma das alternativas e a base tem que ser de 1 ao 10 seria isso ?
replay
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Dom Fev 19, 2012 23:43
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Potencia] Fuvest.

Mensagempor MarceloFantini » Seg Nov 19, 2012 23:13

Note que 4^{16} = (2^2)^{16} = 2^{2 \cdot 16} = 2^{32} = 2^{25 + 7} = 2^7 \cdot 2^{25}.

Voltando à equação original, temos

4^{16} \cdot 5^{25} = 2^7 \cdot 2^{25} \cdot 5^{25} = 2^7 \cdot (2 \cdot 5)^{25} = 2^7 \cdot 10^{25}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Potencia] Fuvest.

Mensagempor replay » Seg Nov 19, 2012 23:27

Marcelo.

Deduzo daqui que para a equação ficar completa eu resolvo
2^7 = 128

Como 128 não está entre 1 e 10 deduzo que preciso diminuir as casa decimais(é o unico modo de satisfazer a equação):
128 . 10^{25}
12,8 . 10^{26}
1,28 . 10^{27}

Sendo questão D como alternativa correta.
Seria isso ?
replay
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Dom Fev 19, 2012 23:43
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Potencia] Fuvest.

Mensagempor MarceloFantini » Seg Nov 19, 2012 23:31

Sim, é isso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Potencia] Fuvest.

Mensagempor replay » Seg Nov 19, 2012 23:35

Não entendo como você escreve na assinatura Futuro Matematico.
Pra min você ja é um grande matematico, queria ter um pouco desse esforço.
replay
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Dom Fev 19, 2012 23:43
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Potencia] Fuvest.

Mensagempor MarceloFantini » Seg Nov 19, 2012 23:38

Essa assinatura já é bem antiga, eu coloquei na época que meu nome no fórum era apenas Fantini e as pessoas achavam que era mulher. Coloquei a assinatura numa tentativa de reduzir o número de enganos. Eventualmente pedi que trocassem meu nome de usuário e o problema resolveu-se, mas deixei a assinatura.

Além disso, estou longe de ser um grande matemático. Tem muito esforço, tempo, dedicação e habilidade necessários antes de chegar lá, mas agradeço pelo elogio.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?