• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Inequação quadrática]

[Inequação quadrática]

Mensagempor SCHOOLGIRL+T » Seg Nov 19, 2012 16:55

\left|{x}^{2}-5x \right|>6
Eu fiz então:
{x}^{2}-5x+6<0
E encontrei 2<x<3
E depois:
{x}^{2}-5x-6>0
E encontrei x<-1 U x>6
A solução final seria união entre estas soluções, mas daria um conjunto vazio. Está errada minha resolução?
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Inequação quadrática]

Mensagempor MarceloFantini » Seg Nov 19, 2012 23:18

Você está confundindo união com interseção.

A interseção entre estes dois conjuntos é vazia. Interseção entre dois conjuntos significa todos os elementos que pertencem a cada um simultaneamente, o que de fato não ocorre.

A união entre eles não. União entre dois conjuntos significa todos os elementos que pertencem a pelo menos um dos conjuntos. Ela é (- \infty, -1) \cup (2,3) \cup (6, + \infty).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Inequação quadrática]

Mensagempor SCHOOLGIRL+T » Ter Nov 20, 2012 11:39

MarceloFantini escreveu:Você está confundindo união com interseção.

A interseção entre estes dois conjuntos é vazia. Interseção entre dois conjuntos significa todos os elementos que pertencem a cada um simultaneamente, o que de fato não ocorre.

A união entre eles não. União entre dois conjuntos significa todos os elementos que pertencem a pelo menos um dos conjuntos. Ela é (- \infty, -1) \cup (2,3) \cup (6, + \infty).


Realmente. Se \left|x \right|>a, então x<-a OU x>a. Tinha me passado despercebido o "OU" rsrs. Obrigada.
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.