• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Logaritmo]-PAES UNIMONTES

[Logaritmo]-PAES UNIMONTES

Mensagempor thamysoares » Sex Nov 16, 2012 10:01

A partir de um certo ano, a população de uma cidade passou a crescer de acordo com a função P=50000.{(1,02)}^{n} em que n representa os anos e P, o número de habitantes. Sabendo-se que log1,02=0,009, depois de quantos anos aproximadamente essa cidade atingirá 500000 habitantes?
Me expliquem como se resolve questões desse tipo, por favor. Obg.
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]-PAES UNIMONTES

Mensagempor e8group » Sex Nov 16, 2012 11:48

Bom dia , thamysoares . Esta função p denota o números de habitantes em função do tempo n , a medida que o tempo n vai aumentando ,o número de habitantes cresce estritamente . Neste caso particular , o exercício que vc calcule o tempo n que satisfaz o número de habitantes . p =  500000 .

Basta resolver , 500.000  =   50.000  \cdot (1,02)^n .Consegue terminar ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Logaritmo]-PAES UNIMONTES

Mensagempor thamysoares » Sex Nov 16, 2012 15:44

santhiago escreveu:Bom dia , thamysoares . Esta função p denota o números de habitantes em função do tempo n , a medida que o tempo n vai aumentando ,o número de habitantes cresce estritamente . Neste caso particular , o exercício que vc calcule o tempo n que satisfaz o número de habitantes . p =  500000 .

Basta resolver , 500.000  =   50.000  \cdot (1,02)^n .Consegue terminar ?


Deu aproximadamente 111 anos. Está correto?
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]-PAES UNIMONTES

Mensagempor e8group » Sex Nov 16, 2012 16:12

Isso mesmo , estar correto


500.000 = 50.000(1,02)^n  = 5\cdot 10^4 (1,02)^n =  5\cdot 10^{5}


Multiplicando ambos lados por 1/( 5 \cdot 10^4 ) vem que ,


5\cdot 10^4 (1,02)^n =  5\cdot 10^{5} =     (5\cdot 10^4 (1,02)^n ) \cdot \frac{1}{5\cdot 10^4}=  (5\cdot 10^{5}) \cdot \frac{1}{5\cdot 10^4}   = 10 =(1,02)^n .

Aplicando logaritmo ,

log(10) =   log(1,02)^n  =  n \cdot log(1,02) = 1


Pelo enunciado , log(1,02)  \approx 0,009 =   0,009 \cdot 1000 /1000 = 9/1000 = 9 \cdot 10^{-3}

Daí , n = \frac{1}{9 \cdot 10^{-3} }  =  \frac{10^3}{9}  = \frac{999}{9} + \frac{1}{9}  = 111 + 0,\bar{1}  \approx 111 \text{anos}
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Logaritmo]-PAES UNIMONTES

Mensagempor thamysoares » Sex Nov 16, 2012 16:34

santhiago escreveu:Isso mesmo , estar correto


500.000 = 50.000(1,02)^n  = 5\cdot 10^4 (1,02)^n =  5\cdot 10^{5}


Multiplicando ambos lados por 1/( 5 \cdot 10^4 ) vem que ,


5\cdot 10^4 (1,02)^n =  5\cdot 10^{5} =     (5\cdot 10^4 (1,02)^n ) \cdot \frac{1}{5\cdot 10^4}=  (5\cdot 10^{5}) \cdot \frac{1}{5\cdot 10^4}   = 10 =(1,02)^n .

Aplicando logaritmo ,

log(10) =   log(1,02)^n  =  n \cdot log(1,02) = 1


Pelo enunciado , log(1,02)  \approx 0,009 =   0,009 \cdot 1000 /1000 = 9/1000 = 9 \cdot 10^{-3}

Daí , n = \frac{1}{9 \cdot 10^{-3} }  =  \frac{10^3}{9}  = \frac{999}{9} + \frac{1}{9}  = 111 + 0,\bar{1}  \approx 111 \text{anos}


Obrigada Santhiago!! =)
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.