• Anúncio Global
    Respostas
    Exibições
    Última mensagem

conjuntos e pa

conjuntos e pa

Mensagempor vihalmeida » Qui Nov 15, 2012 14:31

Considere o conjunto A = { 1, 3, 5, 7, 9, . . . 2n + 1, . . .} dos números naturais ímpares. A soma de 3 e 5 é 8. A soma dos três ímpares seguintes é 27; a dos quatro seguintes é 64 ; a dos 5 seguintes é 125. A soma dos seis ímpares seguintes é :
vihalmeida
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qui Nov 15, 2012 14:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: conjuntos e pa

Mensagempor DanielFerreira » Qui Nov 15, 2012 14:46

Vihalmeida,
seja bem-vinda(o)!!

- Note que a soma dos dois é 2^3;

- Note que a soma dos três é 3^3;

- Note que a soma dos quatro é 4^3;

Portanto, a soma dos seis é dada por:

\\ 6^3 = \\\\ \boxed{216}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.