por thayna_rosa » Seg Nov 12, 2012 18:35
As coordenadas do ponto de máximo de uma função são (3,4).Sabendo que Um dos zeros desta função é igual a 5 , determine o outro zero da função.
-
thayna_rosa
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Nov 12, 2012 18:28
- Formação Escolar: ENSINO FUNDAMENTAL II
- Andamento: cursando
por MarceloFantini » Seg Nov 12, 2012 19:57
Thayna, nosso objetivo não é resolver suas listas de exercício. O que você tentou? Podemos assumir que é uma parábola? Existem outras funções que satisfazem às condições do enunciado.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por thayna_rosa » Seg Nov 12, 2012 19:59
esse é o problema não entendi o exercício
-
thayna_rosa
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Nov 12, 2012 18:28
- Formação Escolar: ENSINO FUNDAMENTAL II
- Andamento: cursando
por MarceloFantini » Seg Nov 12, 2012 20:43
Vamos assumir que seja uma parábola. Sendo assim, ela possui um ponto de máximo ou mínimo, dependendo da concavidade.
Um ponto de máximo significa que em qualquer outro valor a função assumirá um valor menor ou igual a este. De forma semelhante, um ponto de mínimo significa que em qualquer outro valor a função assumirá um valor maior ou igual a este.
A informação que

é um zero da função significa que

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por thayna_rosa » Seg Nov 12, 2012 20:58
ok ,obrigado.
-
thayna_rosa
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Nov 12, 2012 18:28
- Formação Escolar: ENSINO FUNDAMENTAL II
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equação Irracional] - Como desenvolver esse exercício?
por Crouff » Qui Jul 05, 2012 11:55
- 2 Respostas
- 1730 Exibições
- Última mensagem por Crouff

Qui Jul 05, 2012 12:29
Sistemas de Equações
-
- Fatoração - esse consegui desenvolver
por IsadoraLG » Qua Jul 09, 2014 21:47
- 1 Respostas
- 991 Exibições
- Última mensagem por DanielFerreira

Qua Jul 16, 2014 20:41
Álgebra Elementar
-
- Quádricas não consigo desenvolver essa questão
por berg_nascimento » Qui Jun 30, 2016 14:58
- 0 Respostas
- 1374 Exibições
- Última mensagem por berg_nascimento

Qui Jun 30, 2016 14:58
Geometria Analítica
-
- Preciso de ajuda com esse exercício
por Dankaerte » Qui Set 10, 2009 19:10
- 2 Respostas
- 6198 Exibições
- Última mensagem por Elcioschin

Ter Abr 13, 2010 14:01
Matrizes e Determinantes
-
- ola poderiam me ajudar com esse exercicio de p.g
por willwgo » Qui Fev 24, 2011 17:09
- 3 Respostas
- 4876 Exibições
- Última mensagem por Lucas Ambrus de lima

Sáb Jun 29, 2013 21:47
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.