• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação exponencial]

[Equação exponencial]

Mensagempor SCHOOLGIRL+T » Seg Nov 12, 2012 11:44

Supondo x um número real, (x>0 e x\neq1), a inequação {x}^{2x-1}<{x}^{3} tem como solução
a) 0<x<3
b) x<1
c) x>2
d) 1<x<2
Bom, eles disseram que x<0, mas, quando igualamos as bases, para mantermos o sinal de inequação ou inverter, precisamos saber se a base é maior ou menor que 1. Nesse caso, a base é x. Bom, considerando que a base é maior que 1, encontrei x<2 (não tem alternativa) e considerando que a base é menor que 1, encontrei x>2 e considerei que esta é a resposta. Está correto o meu pensamento?
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação exponencial]

Mensagempor young_jedi » Seg Nov 12, 2012 17:11

considerando que a base é maior que 1 voce encontrou que x<2 portanto

1<x<2

agora considerando que a base é menor que 1 voce encontrou que x>2

mais repare que isto é impossivel pois não tem como um numero x ser maior que 2 e menor que 1 ao mesmo tempo logo a opção acima é a correta.
letra d)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Equação exponencial]

Mensagempor SCHOOLGIRL+T » Seg Nov 12, 2012 20:19

young_jedi escreveu:considerando que a base é maior que 1 voce encontrou que x<2 portanto

1<x<2

agora considerando que a base é menor que 1 voce encontrou que x>2

mais repare que isto é impossivel pois não tem como um numero x ser maior que 2 e menor que 1 ao mesmo tempo logo a opção acima é a correta.
letra d)


Obrigada^^
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.