• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Potenciação]

[Potenciação]

Mensagempor SCHOOLGIRL+T » Dom Nov 11, 2012 13:12

Como fazer:
{({2}^{x} + {2}^{-x})}^{3}
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Potenciação]

Mensagempor DanielFerreira » Dom Nov 11, 2012 13:22

\\ \left ( 2^x + 2^{- x} \right )^3 = \\\\ \left ( 2^x + \frac{1}{2^x} \right )^3 = \\\\\\ \left ( \frac{2^x \cdot 2^x + 1}{2^x} \right )^3 = \\\\\\ \left ( \frac{2^{2x} + 1}{2^x} \right )^3 = \\\\\\ \left [ \frac{(2^{2x})^3 \cdot (1)^0 + 3 \cdot (2^{2x})^2 \cdot (1)^1 + 3 \cdot (2^{2x})^1 \cdot (1)^2 + (2^{2x})^0 \cdot 1^3}{(2^x)^3} \right ] =

Consegue terminar?

Nota: (a + b)^3 = a^3 \cdot b^0 + 3 \cdot a^2 \cdot b^1 + 3 \cdot a^1 \cdot b^2 + a^0 \cdot b^3
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Potenciação]

Mensagempor SCHOOLGIRL+T » Dom Nov 11, 2012 14:02

danjr5 escreveu:\\ \left ( 2^x + 2^{- x} \right )^3 = \\\\ \left ( 2^x + \frac{1}{2^x} \right )^3 = \\\\\\ \left ( \frac{2^x \cdot 2^x + 1}{2^x} \right )^3 = \\\\\\ \left ( \frac{2^{2x} + 1}{2^x} \right )^3 = \\\\\\ \left [ \frac{(2^{2x})^3 \cdot (1)^0 + 3 \cdot (2^{2x})^2 \cdot (1)^1 + 3 \cdot (2^{2x})^1 \cdot (1)^2 + (2^{2x})^0 \cdot 1^3}{(2^x)^3} \right ] =

Consegue terminar?

Nota: (a + b)^3 = a^3 \cdot b^0 + 3 \cdot a^2 \cdot b^1 + 3 \cdot a^1 \cdot b^2 + a^0 \cdot b^3


Não '-'
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Potenciação]

Mensagempor DanielFerreira » Qua Nov 14, 2012 23:32

SCHOOLGIRL+T escreveu:Não '-'

Ao menos, diga o que tentou fazer :!:
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)