• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integrais] Cálculo da área

[Integrais] Cálculo da área

Mensagempor MrJuniorFerr » Dom Nov 11, 2012 01:27

Estou com dúvida no seguinte exercício:

Achar a área da região delimitada pelos gráficos de y=x^2 e y=4x.

Sei como resolvê-lo:

Primeiro deve-se igualar as equações e achar as raízes:

x^2=4x

x^2-4x=0

x(x-4)=0

x=0
x=4

x=0 e x=4 são os pontos de x onde as curvas/retas se encontram.

Portanto, para encontrar a área eu deveria fazer isto:

\int_{0}^4 x^2dx - \int_{0}^4 4xdx

ou

\int_{0}^4 4xdx - \int_{0}^4 x^2dx

A minha dúvida é:
Como saber a ordem da subtração?
Pois mudando a ordem da subtração das integrais, muda-se o sinal da área.
Será que vou ter que fazer por um jeito e se der negativo fazer pelo outro ou tem algum método para reconhecer a ordem?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Cálculo da área

Mensagempor MarceloFantini » Dom Nov 11, 2012 02:45

Basta ver qual está acima. Neste caso, a reta estará acima da parábola, portanto é a segunda subtração.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.