• Anúncio Global
    Respostas
    Exibições
    Última mensagem

limite

limite

Mensagempor SILMARAKNETSCH » Sáb Nov 10, 2012 11:20

saiu quase perfeito só não consegui colocar o x flexinha infinito abaixo do lim - alguem poderia me ajudar a solucionar este exercício com etapas para eu aprender de fato?



\lim_{x}\infty\frac{3-2x³}{2x²+3n}
SILMARAKNETSCH
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Seg Out 29, 2012 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: administração EAD prouni deficiente físi
Andamento: cursando

Re: limite

Mensagempor SILMARAKNETSCH » Sáb Nov 10, 2012 11:29

porque apareceu este  se eu não os coloquei na fórmula?
SILMARAKNETSCH
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Seg Out 29, 2012 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: administração EAD prouni deficiente físi
Andamento: cursando

Re: limite

Mensagempor MarceloFantini » Sáb Nov 10, 2012 14:50

O código para este limite Silmara é

Código: Selecionar todos
\lim_{x \to + \infty} \frac{3 - 2x^3}{2x^2 +3x}


assumindo que aquele n na verdade era um x. Aquele A provavelmente apareceu porque você quis usar o comando do teclado para texto normal, que escreveria x³, porém no LaTeX ele sai assim: x³.

Sobre a resolução, quando temos divisão de dois polinômios o método mais usado em limites infinitos é colocar a maior potência de cada polinômio em evidência e perceber o resultado da divisão. Neste caso teremos

\lim_{x \to + \infty} \frac{3-2x^3}{2x^2 +3x} = \lim_{x \to + \infty} \frac{x^3 \left( \frac{3}{x^3} - 2 \right) }{x^2 \left( 2 + \frac{3}{x} \right) } = \lim_{x \to + \infty} \frac{x \left( \frac{3}{x^3} -2 \right) }{ 2 + \frac{3}{x} }

= \lim_{x \to + \infty} \frac{ \frac{3}{x^2} - 2x} {2 + \frac{3}{x}} = - \infty.

Para entender o resultado, lembre-se que \lim_{x \to + \infty} \frac{1}{x^n} = 0 e que \lim_{x \to a} k f(x) = k \lim_{x \to a} f(x), ou seja, que podemos retirar uma constante multiplicando o limite.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: limite

Mensagempor SILMARAKNETSCH » Sáb Nov 10, 2012 15:55

MUITO GRATA MARCELO, VOU TROCAR NÚMEROS E TREINAR TEEI PROVA NO FINAL DO MES E UM COLEGA DE VOVES ME ENSINOU QUE DEVO FAZER EXERCICIOS E TREINANDO ASSIM APRENDO, MAIS UMA VEZ MINHA GRANDE GRATIDÃO.
SILMARAKNETSCH
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Seg Out 29, 2012 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: administração EAD prouni deficiente físi
Andamento: cursando

Re: limite

Mensagempor MarceloFantini » Sáb Nov 10, 2012 16:13

Trocar números não é sempre a melhor forma de aprender. No máximo ele te ensina que os números não importam. Fixe-se nos conceitos, eles resolverão qualquer exercício.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: limite

Mensagempor SILMARAKNETSCH » Sáb Nov 10, 2012 16:21

MarceloFantini escreveu:Trocar números não é sempre a melhor forma de aprender. No máximo ele te ensina que os números não importam. Fixe-se nos conceitos, eles resolverão qualquer exercício.



OK OBRIGADO POR MAIS ESTE ENSINO
SILMARAKNETSCH
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Seg Out 29, 2012 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: administração EAD prouni deficiente físi
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.