por joedsonazevedo » Sex Nov 09, 2012 12:40
Olá, estou com muita dificuldade pra poder montar o raciocínio desta questão...
consigo resolvê-la de forma cursiva, trabalhosa... por extenso... e no vestibular
não posso perder tanto tempo procurando uma resposta que uma expressão
simplesmente me responderá... por favor me ajudem.. obrigado...
Para um passeio em uma lancha, com capacidade para 60 pessoas, uma empresa de turismo
cobra R$80,00 por pessoa quando todos os lugares estão ocupados. Caso existam lugares
não ocupados, ao preço de cada passagem será acrescida a importância de R$2,00 por lugar não ocupado.
Para que a empresa tenha faturamento máximo com esse passeio, pode-se afirmar que o número
de lugares não ocupados na lancha é igual a:
01) 20
02) 17
03) 15
04) 13
05) 10 (resposta correta)
60 lugares -> 80,00 por pessoa -> 4.800 reais totalizados
\/ 60p | 80r | 4800 /\
\/ 59p | 80+2 | 4828 /\
\/ 58p | 80+4 | 4872 /\
--> tentei me expressar por : (60-x).(80+2x)= 4800+ ?
_____________________________________________________
_____________________________________________________
-
joedsonazevedo
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qui Nov 08, 2012 14:23
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. em Informática
- Andamento: formado
por e8group » Sex Nov 09, 2012 14:25
Engraçado esta questão lembra do ifsudeste ,
Vamos lá .
[quote ] Para um passeio em uma lancha, com capacidade para 60 pessoas, uma empresa de turismo
cobra R$80,00 por pessoa quando todos os lugares estão ocupados [/quote ]
Começando aqui , podemos descrever uma função que denota o dinheiro arrecadado em função dos números de pessoas .
Seja

, esta função .

se x = 60
[quote ]Caso existam lugares
não ocupados, ao preço de cada passagem será acrescida a importância de R$2,00 por lugar não ocupado.
[/quote ]
Seja

o números de lugares não ocupados assim ,

.
Orá , mas x é o números de pessoas que ocupam os lugares que tem uma capacidade máxima de 60 lugares , ou seja ,
Assim ,
Nossa função será
Através do x vertice , teremos que

Este ponto fornecerá o valor máximo de p(x) , pois a concavidade estar voltada para baixo .
logo ,

-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Problema de álgebra] me ajudem, por favor!
por chr1sal1da » Qua Jul 19, 2017 16:34
- 1 Respostas
- 5307 Exibições
- Última mensagem por petras

Seg Jul 24, 2017 00:22
Álgebra Elementar
-
- Ajudem, por favor. Não sei como resolver esse problema.
por Krad » Qua Ago 21, 2013 16:27
- 6 Respostas
- 4063 Exibições
- Última mensagem por Krad

Sáb Ago 24, 2013 12:22
Equações
-
- Sistema envolvendo a e b em função de x e y
por iarapassos » Seg Jan 14, 2013 14:52
- 2 Respostas
- 5734 Exibições
- Última mensagem por DanielFerreira

Ter Fev 12, 2013 17:58
Matrizes e Determinantes
-
- [SISTEMA] problema que envolve um sistema
por brunnkpol » Qui Jan 02, 2014 22:57
- 2 Respostas
- 2551 Exibições
- Última mensagem por brunnkpol

Seg Jan 06, 2014 21:37
Sistemas de Equações
-
- Me ajudem por favor.
por diegodalcol » Qui Mai 22, 2008 13:26
- 4 Respostas
- 4802 Exibições
- Última mensagem por admin

Qui Mai 22, 2008 16:33
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.