por Zeh Edu » Sex Nov 09, 2012 05:49
Bom dia!
O valor da soma das raízes da equação

é:
a)-2 b)-1 c)0 d)1 e)2
Segui o seguinte raciocínio, mas não consegui chegar em nada:

e

Substituir os valores acima pra 2x-2 e x-3 na equação original leva a uma equação ainda mais complicada.
Isolar os x nas duas equações acima e igualar as equações encontradas leva a:

Pela falta de alternativas creio que ou meu raciocínio original não seja útil ou os passos após eles estão incorretos.
Muito grato a quem puder ajudar.
-
Zeh Edu
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Ter Mai 08, 2012 01:35
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Vestibulando para engenharia
- Andamento: cursando
por MarceloFantini » Sex Nov 09, 2012 06:47
Multiplique tudo por

, então a equação torna-se

. Faça agora a substituição

, de onde segue

. Resolva e volta para variável original, lembrando que deve-se obedecer à restrição

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Zeh Edu » Sex Nov 09, 2012 08:54
Marcelo Fantini, muito obrigado pela ajuda!!
Resolvendo a equação

chega se em t=1/2 e t=8
Substituindo esses valores em

encontra se que x=-1 ou x=3, cuja soma é 2.
Compliquei muito mais do que devia

. Perceber a presença de

nos dois primeiros termos da equação original foi decisivo! De novo, obrigado.
-
Zeh Edu
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Ter Mai 08, 2012 01:35
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Vestibulando para engenharia
- Andamento: cursando
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Aplicação de Função Exponencial
por Bruhh » Seg Mar 22, 2010 16:47
- 1 Respostas
- 3640 Exibições
- Última mensagem por Elcioschin

Seg Mar 22, 2010 19:10
Funções
-
- [Exponencial/Logarítmos] exercício ITA
por fabiomarine » Ter Ago 28, 2012 16:27
- 5 Respostas
- 3804 Exibições
- Última mensagem por fabiomarine

Qua Ago 29, 2012 13:23
Logaritmos
-
- [Logaritmos] equação com logaritmos
por natanaelvoss » Sex Dez 07, 2012 20:25
- 2 Respostas
- 6661 Exibições
- Última mensagem por jefferson0209

Ter Set 22, 2015 18:40
Logaritmos
-
- Resolva a equação de logaritmos
por andersontricordiano » Qua Mar 23, 2011 17:19
- 2 Respostas
- 2640 Exibições
- Última mensagem por jefferson0209

Ter Set 22, 2015 18:40
Logaritmos
-
- [Logaritmos] Dúvida em um exercicio envolvendo logaritmos.
por LuizGustavo » Sex Jun 01, 2012 22:48
- 2 Respostas
- 5031 Exibições
- Última mensagem por jefferson0209

Ter Set 22, 2015 18:38
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.