• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função inversa, Solução

Função inversa, Solução

Mensagempor Deronsi » Ter Nov 06, 2012 00:29

boa noite!

preciso de ajuda, não estou conseguindo resolver essa equação simples preciso saber a função inversa f-¹(x) da função f(x):
X - 2
3
com resolução bem explicada se não for pedir muito, pois tenho dificuldade na troca de sinal e multiplicação em (-1)
Deronsi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Nov 06, 2012 00:10
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eng. produção
Andamento: cursando

Re: Função inversa, Solução

Mensagempor MarceloFantini » Ter Nov 06, 2012 01:32

Escreva x em função de y. Se y = \frac{x-2}{3}, então multiplicando ambos lados por 3 segue que 3y = x-2. Somando 2 à ambos lados temos finalmente que 3y +2 = x, portanto essa é a função inversa. Para verificar, faça as composições f^{-1}(f(x)) = f(f^{-1}(x)) e veja se são iguais à x.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função inversa, Solução

Mensagempor Deronsi » Ter Nov 06, 2012 06:15

humm.. Só uma dúvida quando ficou 3y=x-2 você "passou" o -2 depois do sinal de igual isolado a variável que é X ?

3y = x - 2

3y + 2 = x
Deronsi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Nov 06, 2012 00:10
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eng. produção
Andamento: cursando

Re: Função inversa, Solução

Mensagempor MarceloFantini » Ter Nov 06, 2012 06:22

Não sei se entendi qual é a sua dúvida, mas sim, eu somei 2 dos dois lados. O que acontece é o seguinte, somando 2 de ambos lados temos 3y +2 = x -2 +2 = x + (2-2) = x + 0 = x, efetivamente isolando o x, como queríamos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função inversa, Solução

Mensagempor Deronsi » Ter Nov 06, 2012 08:08

É isso mesmo, minha dúvida, está tudo claro agora.
Obrigado
Deronsi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Nov 06, 2012 00:10
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eng. produção
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?