• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sequência

Sequência

Mensagempor GrazielaSilva » Qui Nov 01, 2012 10:20

(Fefisa) Se numa sequência temos que f(1)=3 e f(n+1)=2 . f(n) +1,então o valor de f(4) é :
A)4
B)7
C)15
D)31
E)42
GrazielaSilva
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Set 27, 2012 12:56
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Sequência

Mensagempor young_jedi » Qui Nov 01, 2012 13:49

voce pode pensar assim

f(1+1)=2.f(1)+1

f(2)=2.3+1

f(2)=7

ai

f(2+1)=2f(2)+1

f(3)=2.7+1

ff(3)=15

prosseguindo com o pensamento voce chega na chega à resposta
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}