• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas

Derivadas

Mensagempor manuela » Qua Out 31, 2012 15:24

Seja F(u,v)= f(u+v, u-v) com f(2,0)= 1, \frac{\partial f}{\partial x} (2,0)= -1, \frac{\partial f}{\partial y} (2,0)= 2, \frac{\partial ^2 f}{\partial x^2} (2,0)= 1, \frac{\partial ^2 f}{\partial y^2} (2,0)= 2, \frac{\partial ^2 f}{\partial x \partial y} (2,0)= \frac{\partial ^2 f}{\partial y \partial x} (2,0) = 3.
Calcule \frac{\partial F}{\partial v} (1,1), \frac{\partial ^2 F}{\partial u \partial v} (1,1) e \frac{\partial ^2 F}{\partial v^2} (1,1).


Não estou conseguindo resolver, alguém pode me ajudar?
manuela
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 18, 2012 19:52
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Derivadas

Mensagempor young_jedi » Qua Out 31, 2012 21:38

veja que

f(x,y)=f(u+v,u-v)

ou seja

x=u+v

e

y=u-v

dai tiramos as derivadas parciais

\frac{\partial x}{\partial u}=1,\frac{\partial x}{\partial v}=1,\frac{\partial u}{\partial u}=1,\frac{\partial y}{\partial v}=-1

portanto

\frac{\partial F(1,1)}{\partial v}=\frac{\partial f}{\partial x}(2,0).\frac{\partial x}{\partial v}}(1,1)+\frac{\partial f}{\partial y}(2,0).\frac{\partial y}{\partial v}}(1,1)

substituindo os valores

\frac{\partial F(1,1)}{\partial v}=(-1).1+2.(-1)=-3

para a segunda parte

\frac{\partial^2 F(1,1)}{\partial v\partial u}=\left(\frac{\partial^2 f}{\partial x^2}(2,0).\frac{\partial x}{\partial u}}(1,1)+
\frac{\partial^2f}{\partial x.\partial y}(2,0).\frac{\partial y}{\partial u}(1,1)\right).\frac{\partial x}{\partial v}(1,1)+\frac{\partial f}{\partial x}(2,0).\frac{\partial^2x}{\partial v\partial u}(1,1)+
\\
\left(\frac{\partial^2 f}{\partial y \partial x}(2,0).\frac{\partial x}{\partial u}}(1,1)+
\frac{\partial^2f}{\partial y^2}(2,0).\frac{\partial y}{\partial u}(1,1)\right).\frac{\partial y}{\partial v}(1,1)+\frac{\partial f}{\partial y}(2,0).\frac{\partial^2y}{\partial v\partial u}(1,1)

substituindo os valores voce encontra a resposta
e tente fazer o terceiro item
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)