• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Seno e cosseno

[Limite] Seno e cosseno

Mensagempor KleinIll » Qua Out 31, 2012 15:01

\lim_{x \rightarrow1} \left({x}^{3} - 1 \right)\left[ sen(\frac{1}{x - 1}) + cos(\frac{3}{x}) + 10 \right]

Alguém pode explicar como resolver?

Reposta: 0
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Limite] Seno e cosseno

Mensagempor young_jedi » Qua Out 31, 2012 20:33

temos que para qualquer valor de x a expressção nos temos certeza que sen\left(\frac{1}{1-x}\right) esta entre -1 e 1 e cos\left(\frac{3}{x}\right) também ou seja:

-1\leq sen\left(\frac{1}{1-x}\right)\leq1

-1\leq cos\left(\frac{3}{x}\right\rihgt)\leq1

ou seja para quaquer valor de x maior que 1

(x^3-1)(-1-1+10)<(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right)+10\right]

e

(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]<(x^3-1)(1+1+10)

ou seja

para valores de x>1 nos temos

(x^3-1)8<(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]<(x^3-1)12

mais nos temos que

\lim_{x\rightarrow1_+}(x^3-1).8=0

e

\lim_{x\rightarrow1_+}(x^3-1).12=0

então pelo teorema do confronto

\lim_{x\rightarrow1_+}(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]=0

de forma semelhante nos temos que para x<1

(x^3-1)(-1-1+10)>(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right)+10\right]

e

(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]>(x^3-1)(1+1+10)

ou seja

para valores de x<1 nos temos

(x^3-1)8>(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]>(x^3-1)12

mais nos temos que

\lim_{x\rightarrow1_-}(x^3-1).8=0

e

\lim_{x\rightarrow1_-}(x^3-1).12=0

então pelo teorema do confronto

\lim_{x\rightarrow1_-}(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]=0

se os limites laterais existem e ambos são iguais a zero então o limite é igual a zero
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite] Seno e cosseno

Mensagempor e8group » Qua Out 31, 2012 20:34

Desconsidere , já foi respondido .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: