• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Tendência ao infinito

[Limite] Tendência ao infinito

Mensagempor KleinIll » Qua Out 31, 2012 15:04

\lim_{x\rightarrow\infty} \frac{\sqrt[2]{9{x}^{6} - x}}{{x}^{3} + 1}

Alguém pode explicar como resolver?

Reposta: 3
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Limite] Tendência ao infinito

Mensagempor MarceloFantini » Qua Out 31, 2012 19:04

\frac{\sqrt{9x^6 -x}}{x^3 +1} = \frac{\sqrt{9x^6 \left( 1 - \frac{1}{9x^5} \right)}}{x^3 \left( 1 + \frac{1}{x^3} \right) } = \frac{3x^3 \sqrt{ 1 - \frac{1}{9x^5} } }{x^3 \left( 1 + \frac{1}{x^3} \right) } = \frac{3 \sqrt{ 1 - \frac{1}{9x^5} } }{ \left( 1 + \frac{1}{x^3} \right) },

logo

\lim_{x \to \infty} \frac{\sqrt{9x^6 -x}}{x^3 +1} = \lim_{x \to \infty} \frac{3 \sqrt{ 1 - \frac{1}{9x^5} } }{ \left( 1 + \frac{1}{x^3} \right) } = 3.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limite] Tendência ao infinito

Mensagempor KleinIll » Qua Out 31, 2012 23:50

MarceloFantini escreveu:\frac{\sqrt{9x^6 -x}}{x^3 +1} = \frac{\sqrt{9x^6 \left( 1 - \frac{1}{9x^5} \right)}}{x^3 \left( 1 + \frac{1}{x^3} \right) } = \frac{3x^3 \sqrt{ 1 - \frac{1}{9x^5} } }{x^3 \left( 1 + \frac{1}{x^3} \right) } = \frac{3 \sqrt{ 1 - \frac{1}{9x^5} } }{ \left( 1 + \frac{1}{x^3} \right) },

logo

\lim_{x \to \infty} \frac{\sqrt{9x^6 -x}}{x^3 +1} = \lim_{x \to \infty} \frac{3 \sqrt{ 1 - \frac{1}{9x^5} } }{ \left( 1 + \frac{1}{x^3} \right) } = 3.


Obrigado, mas eu ainda não entendi. Se não for abusar, poderia explicar porque o limite é igual a três?
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Limite] Tendência ao infinito

Mensagempor MarceloFantini » Sex Nov 02, 2012 07:49

Lembre-se do limite \lim_{x \to \infty} \frac{1}{x} = 0. Consequentemente, \lim_{x \to \infty} \frac{1}{x^n} = 0 para n > 0. A partir daí, usando as propriedades de limite, temos

\lim_{x \to \infty} \frac{3 \sqrt{1 - \frac{1}{9x^5} }}{1 + \frac{1}{x^3} } = \frac{3 \lim_{x \to \infty} \sqrt{1 - \frac{1}{9x^5}}}{\lim_{x \to \infty} 1 + \frac{1}{x^3}}

= 3 \frac{\sqrt{ \lim_{x \to \infty} 1 - \frac{1}{9x^5} } }{ 1 + \lim_{x \to \infty} \frac{1}{x^3} } = 3 \frac{ \sqrt{ 1 - \lim_{x \to \infty} \frac{1}{9x^5} } } {1 + \lim_{x \to \infty} \frac{1}{x^3} }

3 \frac{ \sqrt{ 1 - \frac{1}{9} \lim_{x \to \infty} \frac{1}{x^5} } } {1 + \lim_{x \to \infty} \frac{1}{x^3} } = 3 \frac{ \sqrt{ 1 - 0} }{ 1 + 0} = 3.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limite] Tendência ao infinito

Mensagempor KleinIll » Sex Nov 02, 2012 10:25

MarceloFantini escreveu:Lembre-se do limite \lim_{x \to \infty} \frac{1}{x} = 0. Consequentemente, \lim_{x \to \infty} \frac{1}{x^n} = 0 para n > 0. A partir daí, usando as propriedades de limite, temos

\lim_{x \to \infty} \frac{3 \sqrt{1 - \frac{1}{9x^5} }}{1 + \frac{1}{x^3} } = \frac{3 \lim_{x \to \infty} \sqrt{1 - \frac{1}{9x^5}}}{\lim_{x \to \infty} 1 + \frac{1}{x^3}}

= 3 \frac{\sqrt{ \lim_{x \to \infty} 1 - \frac{1}{9x^5} } }{ 1 + \lim_{x \to \infty} \frac{1}{x^3} } = 3 \frac{ \sqrt{ 1 - \lim_{x \to \infty} \frac{1}{9x^5} } } {1 + \lim_{x \to \infty} \frac{1}{x^3} }

3 \frac{ \sqrt{ 1 - \frac{1}{9} \lim_{x \to \infty} \frac{1}{x^5} } } {1 + \lim_{x \to \infty} \frac{1}{x^3} } = 3 \frac{ \sqrt{ 1 - 0} }{ 1 + 0} = 3.


Perfeito! Muito obrigado.
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59