• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integrais] Prova de teorema

[Integrais] Prova de teorema

Mensagempor MrJuniorFerr » Dom Out 28, 2012 20:35

Boa noite a todos.

Há um teorema que diz o seguinte:

\int a^x dx = \frac{a^x}{ln(a)}  + C

Tentei provar derivando \frac{a^x}{ln(a)}, mas não cheguei ao resultado que deveria dar.

Fiz o seguinte:

Tentei colocar a parte da regra do quociente em latex aqui, mas deu um "error 6", mas enfim, após montar a regra do quociente e simplificar um pouco, cheguei em:

\frac{a^x(ln(a))^2-\frac{a^x}{a}}{(ln(a))^2} , cortando os (ln(a))^2, chego em:

a^x-\frac{a^x}{a}, tirando MMC:

\frac{a.a^x-a^x}{a}, colocando o a em evidência (na verdade, nem sei se pode):

\frac{a(a^x-1^x)}{a}, cortando os a do numerador e denominador, chego em:

a^x-1^x

Sei que há erros aí, por favor me corrijam.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Prova de teorema

Mensagempor young_jedi » Dom Out 28, 2012 21:49

aplicando a regra do quociente

\frac{a^x.(ln(a))^2-a^x.0}{(ln(a))^2}=a^x

a falha esta na derivada de ln(a) como a é uma constante então ln(a) tambem é constante ou seja sua derivada é igual a 0
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integrais] Prova de teorema

Mensagempor MrJuniorFerr » Dom Out 28, 2012 21:53

Caramba, nem reparei nesse detalhe...
Obrigado Jedi.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Prova de teorema

Mensagempor MarceloFantini » Dom Out 28, 2012 22:30

Não é necessária a regra do quociente. Note que \ln (a) é uma constante, basta derivar a^x. Note que se y=a^x, então \ln y = x \ln a, e pela definição de logaritmo natural, temos que y = e^{x \ln a}.

Sabemos derivar e^{kx} usando a regra da cadeia, portanto y' = (a^x)' = (e^{x \ln a})' = \ln a e^{x \ln a} = \ln a a^x.

Portanto \frac{d}{dx} \frac{a^x}{\ln a} = \frac{1}{\ln a} \cdot \ln a \cdot e^{x \ln a} = e^{x \ln a} = a^x.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}