• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite trigonométrico] Razão entre tangente e seno.

[Limite trigonométrico] Razão entre tangente e seno.

Mensagempor Matheus Lacombe O » Dom Out 28, 2012 17:13

Olá pessoal. Mais uma vez, venho recorrer a este fórum na busca de respostas para minhas dúvidas. Enfim, estou enfrentando problemas na resolução da seguinte questão:

\lim_{x\rightarrow0}\left[\frac{tan(7x)}{sen(3x)} \right]=?

-Tentei utilizar a propriedade a seguir, mas não consegui chegar a uma reposta:

Propriedade: \lim_{x\rightarrow c}\left( \frac{a}{b} \right) = \frac{\lim_{x\rightarrow c}(a) }{\lim_{x\rightarrow c} (b)}

\lim_{x\rightarrow 0}\left[ \frac{tan(7x)}{sen(3x)} \right] = \frac{\lim_{x\rightarrow 0}\left[tan(7x)\right] }{\lim_{x\rightarrow 0} \left[sen(3x)\right]}

- Tentei também:

\lim_{x\rightarrow 0}\left[ \frac{ \frac{sen(7x)}{cos(7x)}}{ \frac{sen(3x)}{1}}\right] = \lim_{x\rightarrow 0}\left[ \frac{sen(7x)}{cos(7x)}. \frac{1}{sen(3x)}\right]

- E, considerando a propriedade abaixo:

Propriedade: \lim_{x\rightarrow c}(a.b) = \lim_{x\rightarrow c}(a).\lim_{x\rightarrow c}(b)

= \lim_{x\rightarrow 0}\left[ \frac{sen(7x)}{cos(7x)} \right].\lim_{x\rightarrow 0}\left[ \frac{1}{sen(3x)} \right]

- Olha, o senhores me desculpem se a dúvida é idota, mas realmente travei, astá tudo muito confuso nesse conteúdo de limites, perece que o critério que aplicado a uma resolução não se aplica à outra e assim por diante. E ainda para piorar peguei um professor "matão" que já nos deu não sei quantos desfalques, passou a lista "em cima do laço" e não marcou reposição das aulas, sendo ainda que a prova continua na mesma data. Vixe, aqui ta foda. A primeira prova fui poliposition, mas do jeito que esse conteúdo aqui ficou nas coxas. Bem, enfim, se alguém puder dar uma exclarecida ou recomendar um bom site sobre o conteúdo, fico grato. Preciso en-ten-der este exercicío.

- Por favor, o que está faltando eu conhecer para resolver este exercicío?

OBS: A resposta do gabarito é (7/3) = 2.33333... Conferi pelo Microsoft Mathematics e a resposta de fato bate. Só não consigo chegar a ela.
Matheus Lacombe O
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Sex Jun 03, 2011 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecânica
Andamento: cursando

Re: [Limite trigonométrico] Razão entre tangente e seno.

Mensagempor MarceloFantini » Dom Out 28, 2012 17:27

Primeiro, considere o limite \lim_{x \to 0} \frac{\tan x}{x}. Este limite é 1. Para provar isto, perceba que

\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x}

= \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x} = 1 \cdot 1 = 1.

Analogamente, se tivermos \lim_{x \to 0} \frac{ \tan (kx)}{x}, com k \neq 0, este limite será k por considerações semelhantes.

Agora, considere o limite \lim_{x \to 0} \frac{\tan (7x)}{\sin (3x)}. Multiplique e divida por x, então

\lim_{x \to 0} \frac{\tan(7x)}{x} \cdot \frac{x}{\sin (3x)} = 7 \cdot \frac{1}{3}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limite trigonométrico] Razão entre tangente e seno.

Mensagempor Matheus Lacombe O » Dom Out 28, 2012 19:34

MarceloFantini escreveu:Agora, considere o limite \lim_{x \to 0} \frac{\tan (7x)}{\sin (3x)}. Multiplique e divida por x, então

\lim_{x \to 0} \frac{\tan(7x)}{x} \cdot \frac{x}{\sin (3x)} = 7 \cdot \frac{1}{3}.


- Demorei um pouco, mas entendi. Primeiro de outra forma, só depois consegui entender sua resposta.

- Lembrei que:

Argumento - 1: \lim_{x\rightarrow 0}\left[ \frac{tan(ax)}{x} \right]=a.1

Argumento - 2: \lim_{x\rightarrow 0}\left[ \frac{sen(ax)}{x} \right]=a.1

- Com isso, consegui enxergar que:

- Considerando que "Efetuar uma mesma operação no numerador(dividendo) e denominador(divisor) não altera a razão(resultado)" - basta que se divida o numerador "tan(7x)" por "x" e o denominador "sen(3x)", também por "x" para poder-se utilizar o Argumento 1 e 2. Desta forma, tem-se que:

\lim_{x\rightarrow 0}\left[ \frac{tan(7x)}{sen(3x)} \right]= \lim_{x\rightarrow 0}\left[ \frac{ \frac{tan(7x)}{x} }{ \frac{sen(3x)}{x} } \right]=\lim_{x\rightarrow 0}\left[ \frac{ 7 }{ 3 } \right]=\left[ \frac{\lim_{x\rightarrow 0}(7) }{\lim_{x\rightarrow 0}(3)} \right]=\frac{7}{3}

- No início não tinha entendido de onde você tirou o "x", achei que talvez fosse algo arbitrário, mas depois que eu fui me ligar que em uma multiplicação de frações, realizar uma mesma operação em diagonal, também não altera o resultado da expressão. Logo:

\lim_{x\rightarrow 0}\left[ \frac{tan(7x)}{sen(3x)} \right]= \lim_{x\rightarrow 0}\left[ \frac{ \frac{tan(7x)}{1} }{ \frac{sen(3x)}{1} } \right]=\lim_{x\rightarrow 0}\left[ \frac{tan(7x)}{1}.\frac{1}{sen(3x)} \right]=

\lim_{x\rightarrow 0}\left[ \frac{tan(7x)}{1.x}.\frac{1.x}{sen(3x)} \right]=\lim_{x\rightarrow 0}\left[ \frac{tan(7x)}{x}.\frac{x}{sen(3x)} \right]=\lim_{x\rightarrow 0}\left[\frac{7}{1}.\frac{1}{3} \right]=\lim_{x\rightarrow 0}\left[\frac{7}{3} \right]

=\left[ \frac{\lim_{x\rightarrow 0}(7) }{\lim_{x\rightarrow 0}(3)} \right]=\frac{7}{3}

- Por último: só pra me certificar. Pelo que você falou a sentença abaixo esta certa né?:

\lim_{x\rightarrow 0}\left[\frac{x}{sen(ax)} \right]= \frac{1}{a.x}

- Obrigado por tudo, desde já. Abraços!
Matheus Lacombe O
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Sex Jun 03, 2011 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecânica
Andamento: cursando

Re: [Limite trigonométrico] Razão entre tangente e seno.

Mensagempor MarceloFantini » Dom Out 28, 2012 21:53

Matheus Lacombe O escreveu:- Por último: só pra me certificar. Pelo que você falou a sentença abaixo esta certa né?:

\lim_{x\rightarrow 0}\left[\frac{x}{sen(ax)} \right]= \frac{1}{a.x}

- Obrigado por tudo, desde já. Abraços!

Sim, é verdadeira. Basta perceber que

\lim_{x \to 0} \frac{x}{\sin(ax)} = \lim_{x \to 0} \frac{1}{\frac{\sin (ax)}{x}} = \frac{1}{\lim_{x \to 0} \frac{\sin(ax)}{x}} = \frac{1}{a},

ou seja, você apenas colocou um x onde não deveria ali.

Sobre as operações, lembre-se que qualquer número real não-nulo dividido por ele mesmo é 1, portanto

1 = \frac{1 + \sqrt{5}}{1 + \sqrt{5}} = \frac{x}{x} = \frac{x^2 -4x}{x^2 -4x}, \ldots,

desde que seja diferente de zero. É um truque comum em limites.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.