• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão geométrica

Progressão geométrica

Mensagempor tan lopes » Qui Out 25, 2012 18:41

Em uma progressão geométrica de seis termos e razão 2, a diferença entre os dois últimos termos é 48.
Qual é o primeiro termo dessa progressão?
(A) 3
(B) 6
(C) 12
(D) 14
(E) 28
A resposta é letra (A), como será que se chega ao resultado? alguém saberia?
tan lopes
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 18, 2012 12:02
Formação Escolar: ENSINO MÉDIO
Área/Curso: técnico em informática
Andamento: formado

Re: Progressão geométrica

Mensagempor Russman » Qui Out 25, 2012 20:29

O 1° passo é montar as equações. Sempre.

O n-ésimo Termo Geral da Progressão Geométrica a(n) é dado por a(n) = a(1)q^{n-1} onde q é a sua razão.

Se a P.G. tem 6 termos então P.G.=\left \{ a(1),a(2),a(3),a(4),a(5),a(6) \right \}=\left \{ a(1),a(1)q,a(1)q^2,a(1)q^3,a(1)q^4,a(1)q^5 \right \}.

O problema diz que a razão da P.G. é q=2. Assim, P.G.=\left \{ a(1),2a(1),4a(1),8a(1),16a(1),32a(1) \right \}.

Ainda, a diferença dos dois últimos é 48. Logo,

32a(1) - 16a(1) = 48

de forma que 32a(1) - 16a(1)=48\Rightarrow 16a(1) = 48\Rightarrow a(1)=3.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Progressão geométrica

Mensagempor tan lopes » Ter Out 30, 2012 16:38

OK, muito obrigada!!!
tan lopes
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 18, 2012 12:02
Formação Escolar: ENSINO MÉDIO
Área/Curso: técnico em informática
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.