• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Qua Out 05, 2011 22:37

Não consigo resolver este exercício, não sei qual procedimento correto a ser feito.
Faço uma troca de variaveis com e elevado a 2x -1 e depois aplico logaritmo neperiano, mass não chego no resultado.
\lim_{x\rightarrow{0}}\frac{\epsilon^{2x}-1}{x}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qui Out 06, 2011 10:53

No exemplo 4 da vídeo-aula "08. Cálculo I - Limites Exponenciais" você pode encontrar a solução para \lim_{x\to 0} \frac{x}{e^{2x}-1} . Aplicando as mesmas ideias exibidas nessa solução você resolverá o limite desejado.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Qui Out 06, 2011 12:55

Correto mas quando o limite for

\lim_{x\rightarrow{0}}]\frac{\epsilon^{x^2}-1}{x}

não consegui resolvê-lo.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qui Out 06, 2011 18:01

A ideia ainda continua a mesma.

Você tem o limite:

\lim_{x\to 0} \frac{e^{x^2}-1}{x}

Faça a substituição u = e^{x^2} - 1 . Quando x tende para zero, temos que u também tende para zero.

Além disso, podemos escrever que \ln (u + 1) = x^2 . Nesse ponto, há um detalhe importante. Quando u se aproxima de zero pela esquerda, sabemos que \ln(u + 1) < 0 . Por isso, simplesmente escrever \sqrt{\ln (u + 1)} = x é um erro.

Para fugir disso, note que podemos calcular o limite original através de seus laterais. Sabemos que se os limites laterais são iguais, então o limite original existe e o seu valor coincide com o dos laterais.

Calculando o limite pela direita, temos que:
\lim_{x\to 0^+} \frac{e^{x^2} - 1}{x} = \lim_{u\to 0^+} \frac{u}{\sqrt{\ln(u+1)}}

= \lim_{u\to 0^+} \frac{u\sqrt{\ln(u+1)}}{\ln(u+1)}

= \lim_{u\to 0^+} \frac{\sqrt{\ln(u+1)}}{\frac{1}{u}\ln(u+1)}

= \lim_{u\to 0^+} \frac{\sqrt{\ln(u+1)}}{\ln(u+1)^{\frac{1}{u}}}

= \frac{\sqrt{\ln(0+1)}}{\ln e} = \frac{0}{1} = 0

Calculando o limite pela esquerda, temos que:
\lim_{x\to 0^-} \frac{e^{x^2} - 1}{x} = \lim_{x\to 0^+} \frac{e^{(-x)^2} - 1}{-x}

= \lim_{x\to 0^+} -\frac{e^{x^2} - 1}{x}

= - \lim_{u\to 0^+} \frac{u}{\sqrt{\ln(u+1)}} = 0

Portanto, como \lim_{x\to 0^-} \frac{e^{x^2} - 1}{x} = \lim_{x\to 0^+} \frac{e^{x^2} - 1}{x} = 0, podemos afirmar que \lim_{x\to 0} \frac{e^{x^2} - 1}{x} = 0 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Qui Out 06, 2011 20:32

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor TheKyabu » Qui Out 25, 2012 19:45

Fala serio Professor,nessa passagem vc teve a manha demais em inverter o u,nunca q eu ia imagina,mas me ajudou pra caramba,vlw :-D
= \lim_{u\to 0^+} \frac{u\sqrt{\ln(u+1)}}{\ln(u+1)}

= \lim_{u\to 0^+} \frac{\sqrt{\ln(u+1)}}{\frac{1}{u}\ln(u+1)}
TheKyabu
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Out 19, 2012 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}