por renan_a » Sáb Out 20, 2012 22:00
Olá, estou com um exercício que consegui resolver até certa parte, mas na hora que chegou na parte de calcular o ponto simétrico em relação ao plano, eu travei. O exercício é o seguinte:
Achar o ponto N, projeção ortogonal do ponto P(3,-1,-4) no plano determinado pelos pontos a(2,-2,3) , B(4,-3,-2) e c(0, -4, 5). Qual o ponto simétrico de P em relaçao a este pllano?
Comecei determinando o plano(multipliquei por -1) :

: 2x - y + z -9 = 0
sabendo que a reta é r: x = 3 + 2t , y= -1 - t, z= -4 + t
e depois substituindo os valores do ponto P* da reta no plano, cheguei que t= 1
sendo t=1, o tal ponto será P*(5,-2,-3)
-------
Aí eu precido saber qual é o ponto simétrico de P em relação ao plano?
sei que seria tipo, Id(P,P*)I = Id(P, ?)I
lembrando que não posso colocar em fórmula, preciso descobrir esse outro ponto aí? alguém pode ajudar?
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por young_jedi » Sáb Out 20, 2012 22:58
tenho uma solução, não sei se é a mais simples
com voce ja tem P e P* calcule a distancia entre os dois e então calcule a distancia entre o outro ponto e a o ponto P* e igua-le a essa distancia

voce vai encontrar dois valores de t um deles deve ser 0 que leva ao ponto P, o outro é o valor que voce vai usar para determinar o outro ponto.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por renan_a » Dom Out 21, 2012 14:40
tentei resolver aqui, mas acho que eu havia feito algo errado antes disso:
Vou começar do principio então:
AB( 2,-1,-5) , AC(-2,-2,2)
Fazendo o produto vetorial desses dois, descubro que n(-12,6,-6) e simplicando , encontrei n(-2,1,-1)
aí a equação do plano ficou -2x + y - z +9= 0
Como sei n e P, a equação paramétrica da reta que contém P e o vetor n, fica
r: x= 3-2t/ y= -1 +t/ z= -4-t
Agora substituo os valores do ponto P* no plano.
fazendo a substituição , descubro que t= -1
sendo t = -1, o ponto P*( 5,-2,-3)
---------------
Agora eu tenho que descobrir o ponto simétrico.
Bom, o ponto P** seria como?
uso o ponto P* e o n? daí ficaria P**(5-2t, -2+t, -4-t)
está correto?
outra coisa, na tua última resposta, pelo que tu disse que ficaria, seria P** - P , não seria P**- P* ?
Muito obrigado pelas respostas
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por renan_a » Dom Out 21, 2012 15:49
entendi como fazer... eu tava ''vegetando'' aqui hahaha
Muito obrigado pela resposta ,meu velho
abraço
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- ponto simétrico
por sinuca147 » Seg Mai 25, 2009 09:40
- 3 Respostas
- 32194 Exibições
- Última mensagem por gustavoluiss

Seg Jan 03, 2011 02:03
Álgebra Elementar
-
- Simetrico de um ponto
por izabela » Seg Mai 23, 2011 21:13
- 0 Respostas
- 1717 Exibições
- Última mensagem por izabela

Seg Mai 23, 2011 21:13
Geometria Analítica
-
- Ponto Simétrico
por Claudin » Qui Abr 05, 2012 19:16
- 3 Respostas
- 3038 Exibições
- Última mensagem por Claudin

Sáb Abr 07, 2012 10:32
Geometria Analítica
-
- Ponto Simétrico
por nataliaknot » Sáb Mar 08, 2014 21:23
- 2 Respostas
- 2098 Exibições
- Última mensagem por nataliaknot

Dom Mar 09, 2014 11:46
Geometria Analítica
-
- [Coordenadas de um ponto simetrico]
por lucasdemirand » Dom Set 01, 2013 11:40
- 1 Respostas
- 2290 Exibições
- Última mensagem por e8group

Ter Set 03, 2013 12:12
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.