• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[PONTO SIMÉTRICO]

[PONTO SIMÉTRICO]

Mensagempor renan_a » Sáb Out 20, 2012 22:00

Olá, estou com um exercício que consegui resolver até certa parte, mas na hora que chegou na parte de calcular o ponto simétrico em relação ao plano, eu travei. O exercício é o seguinte:

Achar o ponto N, projeção ortogonal do ponto P(3,-1,-4) no plano determinado pelos pontos a(2,-2,3) , B(4,-3,-2) e c(0, -4, 5). Qual o ponto simétrico de P em relaçao a este pllano?

Comecei determinando o plano(multipliquei por -1) : \pi: 2x - y + z -9 = 0

sabendo que a reta é r: x = 3 + 2t , y= -1 - t, z= -4 + t

e depois substituindo os valores do ponto P* da reta no plano, cheguei que t= 1

sendo t=1, o tal ponto será P*(5,-2,-3)

-------

Aí eu precido saber qual é o ponto simétrico de P em relação ao plano?

sei que seria tipo, Id(P,P*)I = Id(P, ?)I

lembrando que não posso colocar em fórmula, preciso descobrir esse outro ponto aí? alguém pode ajudar?
renan_a
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Ter Set 25, 2012 08:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [PONTO SIMÉTRICO]

Mensagempor young_jedi » Sáb Out 20, 2012 22:58

tenho uma solução, não sei se é a mais simples

com voce ja tem P e P* calcule a distancia entre os dois e então calcule a distancia entre o outro ponto e a o ponto P* e igua-le a essa distancia

d_{PP*}=\sqrt{(5-3-2t)^2+(-2+1+t)^2+(-3+4-t)^2}

voce vai encontrar dois valores de t um deles deve ser 0 que leva ao ponto P, o outro é o valor que voce vai usar para determinar o outro ponto.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [PONTO SIMÉTRICO]

Mensagempor renan_a » Dom Out 21, 2012 14:40

tentei resolver aqui, mas acho que eu havia feito algo errado antes disso:

Vou começar do principio então:

AB( 2,-1,-5) , AC(-2,-2,2)
Fazendo o produto vetorial desses dois, descubro que n(-12,6,-6) e simplicando , encontrei n(-2,1,-1)

aí a equação do plano ficou -2x + y - z +9= 0

Como sei n e P, a equação paramétrica da reta que contém P e o vetor n, fica

r: x= 3-2t/ y= -1 +t/ z= -4-t

Agora substituo os valores do ponto P* no plano.

fazendo a substituição , descubro que t= -1

sendo t = -1, o ponto P*( 5,-2,-3)

---------------
Agora eu tenho que descobrir o ponto simétrico.

Bom, o ponto P** seria como?

uso o ponto P* e o n? daí ficaria P**(5-2t, -2+t, -4-t)
está correto?

outra coisa, na tua última resposta, pelo que tu disse que ficaria, seria P** - P , não seria P**- P* ?

Muito obrigado pelas respostas
renan_a
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Ter Set 25, 2012 08:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [PONTO SIMÉTRICO]

Mensagempor renan_a » Dom Out 21, 2012 15:49

entendi como fazer... eu tava ''vegetando'' aqui hahaha
Muito obrigado pela resposta ,meu velho
abraço
renan_a
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Ter Set 25, 2012 08:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}