por GABRIELA » Ter Set 08, 2009 21:41
Estou com a seguinte questão de sistema:
2x-y = 7
x+4y=-1Então fiz assim
8x-4y=7
4x=7
x=7-4
x=3
Não entendo muito como resolve sistema então fiz assim,mas não estou sabendo resolver para achar o outro valor.
Se estiver errado fazer assim,pelo menos achei o valor de um deles.kkkkk

Tentei!!!
-
GABRIELA
- Usuário Parceiro

-
- Mensagens: 73
- Registrado em: Seg Ago 31, 2009 17:31
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Molina » Qua Set 09, 2009 00:18
GABRIELA escreveu:Estou com a seguinte questão de sistema:
2x-y = 7
x+4y=-1Então fiz assim
8x-4y=7
4x=7
x=7-4
x=3
Não entendo muito como resolve sistema então fiz assim,mas não estou sabendo resolver para achar o outro valor.
Se estiver errado fazer assim,pelo menos achei o valor de um deles.kkkkk

Tentei!!!
Boa noite, Gabriela.
Em sistemas lineares os mesmo valores de
x e
y encontrados tem que satisfazer ambas equações.
Um dos modos mais fáceis e usados para resolver isso é isolar uma incognita (x ou y) em uma das equações e substituir o valor correspondente na outra equação, ficando assim com apenas uma variável. Assim:

(equação 1)

(equação 2)
1) Isole o x da
equação 2, ou seja, deixa x sozinho de um lado do igual e o restante do outro lado.
2) Na
equação 1 subtitua o x que está junto com o

pelo valor encontrado no item 1).
3) Com isso você vai ficar apenas com y na equação, sendo possível determinar o valor dele.
4) Com o valor de y achado, substitua em qualquer uma das equações e encontre o valor de x.
Tente e comente qualquer novidade.
Até mais.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por GABRIELA » Qua Set 09, 2009 17:10
molina escreveu:GABRIELA escreveu:Estou com a seguinte questão de sistema:
2x-y = 7
x+4y=-1Então fiz assim
8x-4y=7
4x=7
x=7-4
x=3
Não entendo muito como resolve sistema então fiz assim,mas não estou sabendo resolver para achar o outro valor.
Se estiver errado fazer assim,pelo menos achei o valor de um deles.kkkkk

Tentei!!!
Boa noite, Gabriela.
Em sistemas lineares os mesmo valores de
x e
y encontrados tem que satisfazer ambas equações.
Um dos modos mais fáceis e usados para resolver isso é isolar uma incognita (x ou y) em uma das equações e substituir o valor correspondente na outra equação, ficando assim com apenas uma variável. Assim:

(equação 1)

(equação 2)
1) Isole o x da
equação 2, ou seja, deixa x sozinho de um lado do igual e o restante do outro lado.
2) Na
equação 1 subtitua o x que está junto com o

pelo valor encontrado no item 1).
3) Com isso você vai ficar apenas com y na equação, sendo possível determinar o valor dele.
4) Com o valor de y achado, substitua em qualquer uma das equações e encontre o valor de x.
Tente e comente qualquer novidade.
Até mais.

Blz!Fiz como vc me ensinou achei 3 e 1,só que deve ser -1
Ahh1 Sou péssima em resolver sistema...
Me ajuda resolver?
-
GABRIELA
- Usuário Parceiro

-
- Mensagens: 73
- Registrado em: Seg Ago 31, 2009 17:31
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Molina » Qua Set 09, 2009 17:41
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por GABRIELA » Qua Set 09, 2009 18:05
Ok! Entendi como resolve um sistema desse.
Obrigada!
Mas agora eu tenho um sistema que tem 3 equações.
Veja:
x + x + z = -1
2x - y - 3z = 5
x + 2y + z = 0
O procedimento não vai ser o mesmo da anterior,vai?
-
GABRIELA
- Usuário Parceiro

-
- Mensagens: 73
- Registrado em: Seg Ago 31, 2009 17:31
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Molina » Qua Set 09, 2009 18:39
GABRIELA escreveu:Ok! Entendi como resolve um sistema desse.
Obrigada!
Mas agora eu tenho um sistema que tem 3 equações.
Veja:
x + x + z = -1
2x - y - 3z = 5
x + 2y + z = 0
O procedimento não vai ser o mesmo da anterior,vai?
Olá, Gabriela.
Para perguntas diferentes, tópicos diferentes, ok? Então nas próximas crie um novo tópico. Mas essa vou responder aqui:
O procedimento é diferente do anterior. Durante seus estudos você vai ver diferentes maneiras de encontrar a mesma coisa (no caso, de encontrar
x,
y e
z).
Por agora, não posso lhe ajudar, pois não sei qual ferramentas você ja viu nas aulas. Escalonamento? Cramer?
Aproveito aqui já para corrigir seu erro de digitação:
GABRIELA escreveu:
x + x + z = -1
2x - y - 3z = 5
x + 2y + z = 0
Correto:
(mudei aqui!)


Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por GABRIELA » Qua Set 09, 2009 18:52
molina escreveu:GABRIELA escreveu:Ok! Entendi como resolve um sistema desse.
Obrigada!
Mas agora eu tenho um sistema que tem 3 equações.
Veja:
x + x + z = -1
2x - y - 3z = 5
x + 2y + z = 0
O procedimento não vai ser o mesmo da anterior,vai?
Olá, Gabriela.
Para perguntas diferentes, tópicos diferentes, ok? Então nas próximas crie um novo tópico. Mas essa vou responder aqui:
O procedimento é diferente do anterior. Durante seus estudos você vai ver diferentes maneiras de encontrar a mesma coisa (no caso, de encontrar
x,
y e
z).
Por agora, não posso lhe ajudar, pois não sei qual ferramentas você ja viu nas aulas. Escalonamento? Cramer?
Aproveito aqui já para corrigir seu erro de digitação:
GABRIELA escreveu:
x + x + z = -1
2x - y - 3z = 5
x + 2y + z = 0
Correto:
(mudei aqui!)


ok! Então vou abrir um novo tópico com a mesma pergunta.
Na verdade eu ja vi toda essa matéria, estou fazendo uma revisão de algumas coisas, só que sistema não me lembro muito.
-
GABRIELA
- Usuário Parceiro

-
- Mensagens: 73
- Registrado em: Seg Ago 31, 2009 17:31
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Sistemas
por Jansen » Dom Mai 10, 2009 00:01
- 5 Respostas
- 4485 Exibições
- Última mensagem por Molina

Seg Mai 11, 2009 04:36
Sistemas de Equações
-
- sistemas
por Magda » Sex Jun 19, 2009 18:37
- 5 Respostas
- 3503 Exibições
- Última mensagem por Magda

Sex Ago 07, 2009 19:49
Sistemas de Equações
-
- Sistemas
por GABRIELA » Qua Set 09, 2009 18:59
- 2 Respostas
- 1612 Exibições
- Última mensagem por GABRIELA

Qui Set 10, 2009 17:08
Sistemas de Equações
-
- Sistemas
por GABRIELA » Seg Set 21, 2009 17:25
- 4 Respostas
- 2252 Exibições
- Última mensagem por GABRIELA

Ter Set 22, 2009 09:45
Sistemas de Equações
-
- Sistemas
por Douglaspimentel » Qui Abr 15, 2010 18:39
- 1 Respostas
- 2341 Exibições
- Última mensagem por Elcioschin

Qui Abr 15, 2010 20:14
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.