• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra Linear

Álgebra Linear

Mensagempor marinalcd » Seg Out 15, 2012 12:59

Como faço para determinar se uma transformação linear é injetora ou sobrejetora?
Por exemplo: T(x,y)= (x-2y,3x+y,x+y) é injetora ou sobrejetora.
Não estou conseguindo determinar!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Álgebra Linear

Mensagempor young_jedi » Seg Out 15, 2012 15:18

uma transformação é dita injetora se elementos distintos do dominio fornecem imagens distintas.

ou seja para um dado (x_1,y_1) existe uma imagem sendo que nenhum outro par (x,y) resulte nessa mesma imagem.
observe que se existirem dois elementos do dominio que tem a mesma imagem podemos dizer

x_1-2y_1=x_2-2y_2
3x_1+y_1=3x_2+y_2
x_1+y_1=x_2+y_2

dai tiramos

x_1-x_2-2(y_1-y_2)=0
3(x_1-x_2)+y_1-y_2=0
x_1-x_2+y_1-y_2=0

temos que a unica solução deste sistema sera para

x_1-x_2=0
y_1-y_2=0

ou seja

x_1=x_2
y_1=y_2

sendo assim eles são o mesmo elemento, portanto cada elemento da imagem possui apenas um elemento correpondente no dominio então a função é injetora.
para a função sobrejetora lembre-se de que a imagem deve ser igual ao contra-dominio, neste caso o contradominio são os elementos de R^3, então voce tem que verificar se para cada elemento de R^3 existe um par (x,y) associado a ele.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Álgebra Linear

Mensagempor marinalcd » Seg Out 15, 2012 16:16

Obrigada pela ajuda!

Então, sendo uma função injetora, ela não pode ser sobrejetora, né? (nesse caso)
Mesmo eu calculando.
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Álgebra Linear

Mensagempor young_jedi » Seg Out 15, 2012 16:36

uma função pode sim ser sobrejetora e injetora sendo assim bijetora, não é o caso desta
ela é injetora porem não e sobrejetora.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Álgebra Linear

Mensagempor marinalcd » Seg Out 15, 2012 19:34

Muito obrigada pela ajuda!!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59