• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral]. Dúvida

[Integral]. Dúvida

Mensagempor Jessica Seno » Seg Out 15, 2012 11:14

Bom Dia,

Eu comecei a integrar:
\int_{}^{}\frac{xdx}{\sqrt[]{x+1}}}

Chamei u=x+1=> x=u-1
Logo, dx=du.
Daí,
\int_{}^{}\frac{xdx}{\sqrt[]{x+1}}=\int_{}^{}\frac{\left(u-1 \right)du}{\sqrt[]{u}}

Estou no caminho certo ou existe um mais fácil?... Empaquei aí...
Jessica Seno
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Out 14, 2012 14:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: [Integral]. Dúvida

Mensagempor young_jedi » Seg Out 15, 2012 15:24

sua solução esta certa, oque voce precisa fazer é escrever a integral de um jeito mais facil

\int\frac{u-1}{\sqrt{u}}du=\int\left(\frac{u}{u^\frac{1}{2}}-\frac{1}{u^\frac{1}{2}}\right)du

podemos ainda melhorar mais

\int\left(u^{1-\frac{1}{2}}-u^{-\frac{1}{2}}\right)du=\int(u^{\frac{1}{2}}-u^{-\frac{1}{2}})du

a partir dai é so aplicar o conceito de anti derivada.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral]. Dúvida

Mensagempor Jessica Seno » Ter Out 16, 2012 08:56

Bom Dia,

Muito obrigada pela ajuda...
Agora deu certo...

Jéssica Seno
Jessica Seno
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Out 14, 2012 14:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59