por Matheus Lacombe O » Sáb Out 13, 2012 16:30
- Dae galerinha! Tudo bem? Olhem só: - Estava resolvendo minha lista de exercicíos de 'Algebra Linear e Geometria Analítica' e eis que me deparo com uma questão em que não consigo concordar com o resultado exposto no gabarito. A questão basicamente propõem que, dados três pontos no espaço, pertencentes a um triângulo qualquer, deve-se encontrar a área deste triângulo. Lembrando, o tipo do triângulo não é informado.
Na integra: "Exercicío: 7.24) Calcule a área do triângulo cujos vértices são os pontos A(2,1,-1), B(1,-1,0) e C(-1,1,2)". (Melo, Aline Resmine.
Apostila de Álgebra Linear e Geometria Analítica, 2010, p.113).
- Para tento, pensei ná fórmula abaixo e resolvi:

Com o eixo 'Z', fica:
Resolução:



- No entanto, a resposta que consta no gabarito é:
![6\sqrt[]{2} 6\sqrt[]{2}](/latexrender/pictures/47873a0de37bfd7f9e4e44390bcce50f.png)
- E agora, senhor? Onde foi que eu errei? Oh God, why?
Abraços pessoal! Aguardando..
-
Matheus Lacombe O
- Usuário Dedicado

-
- Mensagens: 36
- Registrado em: Sex Jun 03, 2011 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecânica
- Andamento: cursando
por e8group » Sáb Out 13, 2012 17:51
Considere o triângulo ABC . Através da altura (h) relativa ao segmento AC teremos duas relações donde obteremos a altura em função do ângulo adjacente a altura .
1)
2)
Substituindo a relação (1) em (2) :

.Assim ,

.
Visto que :
Seque que :

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calculo da area de um triangulo
por matway » Dom Set 04, 2011 20:36
- 2 Respostas
- 3035 Exibições
- Última mensagem por matway

Seg Set 05, 2011 09:04
Geometria Plana
-
- cálculo 1 area do triangulo
por ezidia51 » Qui Set 12, 2019 01:48
- 1 Respostas
- 3814 Exibições
- Última mensagem por adauto martins

Qua Out 02, 2019 16:54
Cálculo: Limites, Derivadas e Integrais
-
- Dúvida {Cálculo da área de um triângulo}
por Danilo » Qua Jul 11, 2012 05:40
- 2 Respostas
- 2834 Exibições
- Última mensagem por Danilo

Qua Jul 11, 2012 13:54
Geometria Analítica
-
- [Triângulo] Calculo de área com integrais
por klueger » Qua Fev 06, 2013 18:10
- 1 Respostas
- 2103 Exibições
- Última mensagem por timoteo

Qua Fev 06, 2013 20:14
Cálculo: Limites, Derivadas e Integrais
-
- [Razão da área do triângulo para a área do quadrilátero]
por Mayra Luna » Sex Nov 23, 2012 20:17
- 2 Respostas
- 4412 Exibições
- Última mensagem por Mayra Luna

Ter Nov 27, 2012 14:53
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.