• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite Trigonométrico] Não consigo começar a resolver

[Limite Trigonométrico] Não consigo começar a resolver

Mensagempor dileivas » Ter Out 09, 2012 19:30

O limite é o seguinte:

\lim_{x\rightarrow -2} \frac{tan (\pi x)}{x+2}

Pensei em multiplicar em cima e embaixo por pi*x pra tentar cair num limite fundamental, mas não bate com a resposta (que seria pi). Deve ser porque x não está tendendo a zero, não configurando um limite fundamental.

Alguém poderia me ajudar?

Obrigado!
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor dileivas » Sex Out 12, 2012 14:43

ninguém? =/
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor young_jedi » Sex Out 12, 2012 14:47

Amigo não sei se voce ja estudou derivada e Teorema de L'hospital

esse limite ai pode ser resolvido por esse metodo, comente ai qualquer cosia
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor LuizAquino » Sex Out 12, 2012 15:32

dileivas escreveu:O limite é o seguinte:

\lim_{x\rightarrow -2} \frac{tan (\pi x)}{x+2}

Pensei em multiplicar em cima e embaixo por pi*x pra tentar cair num limite fundamental, mas não bate com a resposta (que seria pi). Deve ser porque x não está tendendo a zero, não configurando um limite fundamental.

Alguém poderia me ajudar?


young_jedi escreveu:Amigo não sei se voce ja estudou derivada e Teorema de L'hospital

esse limite ai pode ser resolvido por esse metodo, comente ai qualquer cosia


Para resolver esse exercício sem usar a Regra de L'Hospital, podemos proceder como indicado abaixo.

Fazendo a substituição de variáveis u = x + 2 , como temos x\to -2 sabemos que u \to 0 .

Ficamos então com:

\lim_{x\to -2} \frac{\textrm{tg}\, (\pi x)}{x+2} = \lim_{u\to 0} \frac{\textrm{tg}\, (\pi u - 2\pi)}{u}

Lembrando da definição de tangente, podemos ainda escrever que:

= \lim_{u\to 0} \frac{\textrm{sen}\, (\pi u - 2\pi)}{u\cos (\pi u - 2\pi)}

Aplicando então a identidade trigonométrica \textrm{sen}\,(\alpha - \beta) = \textrm{sen}\,\alpha\cos \beta - \,\textrm{sen}\,\beta\cos \alpha , temos que:

= \lim_{u\to 0} \frac{\textrm{sen}\, \pi u}{u\cos (\pi u - 2\pi)}

Agora tente concluir o exercício a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor dileivas » Sex Out 12, 2012 17:12

Meu resultado ainda está errado... teria que dar \pi. O que estou errando?

\lim_{u\to 0} \frac{\textrm{sen}\, \pi u}{u\cos (\pi u - 2\pi)} *\frac{\pi}{\pi} = \lim_{u\to 0} \frac{\textrm{sen}\, \pi u}{\pi u} *\lim_{u\to 0} \frac{1}{\cos (\pi u - 2\pi)} = \lim_{u\to 0} \frac{1}{\cos (\pi u - 2\pi)},

Tendo que \lim_{u\to 0} \frac{\textrm{sen}\, \pi u}{\pi u} é um limite fundamental, que é igual a 1.

Como u\rightarrow 0 temos

\frac{1}{\cos (- 2\pi)} = 1

Não poderei aplicar o Teorema de L'hospital na prova 1 ainda, por isso tenho que resolver esse limite de outra forma...

Obrigado pela ajuda!
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor young_jedi » Sex Out 12, 2012 17:20

voce multiplica e divide a equação por \pi, para chegar ao limite fundamental até ai esta certo,
mais em sua proxima passgem matematica voce "desaparece " com o \pi que esta em cima, acho que voce se esqueceu dele por isso o resultado não da certo.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor dileivas » Sex Out 12, 2012 17:33

Apesar de não saber o que errei na resposta anterior, consegui chegar no resultado de outra forma:

\lim_{u\to 0} \frac{\textrm{sen}\, \pi u}{u\cos (\pi u - 2\pi)}

Se aplicarmos a identidade trigonométrica \cos\alpha \cos\beta + \sin\alpha \sin\beta, teremos

\lim_{u\to 0} \frac{\textrm{sen}\, (\pi u)}{u\cos (\pi u)} *\frac{\pi}{\pi} = \lim_{u\to 0} \frac{\textrm{sen}\, (\pi u)}{\pi u} * \lim_{u\to 0} \frac{\pi}{\cos (\pi u)}

Como \lim_{u\to 0} \frac{\textrm{sen}\, (\pi u)}{\pi u} é um limite fundamental, que é igual a 1, resta

\lim_{u\to 0} \frac{\pi}{\cos (\pi u)}

Como u \rightarrow 0, temos

\frac{\pi}{\cos (0)} = \pi

Está correto!?

Obrigado! =D
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor dileivas » Sex Out 12, 2012 17:36

young_jedi escreveu:voce multiplica e divide a equação por \pi, para chegar ao limite fundamental até ai esta certo,
mais em sua proxima passgem matematica voce "desaparece " com o \pi que esta em cima, acho que voce se esqueceu dele por isso o resultado não da certo.


Aaaah! Verdade! Só tinha esquecido do \pi! Daria certo também, foi falta de atenção...

Obrigado! Ajudaram muito!
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D