• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Combinação de cores nas faces do cubo]

[Combinação de cores nas faces do cubo]

Mensagempor Gustavo Gomes » Qua Out 10, 2012 23:19

Olá, pessoal.

Como pode-se resolver a seguinte questão:

'Cada face de um cubo pode ser pintada de vermelho ou de azul. Quantos cubos diferentes podemos obter?'

A resposta correta é 10.

Pensando intuitivamente, e considerando que a posição em que o cubo se encontra não interfere no resultado, teríamos as seguintes possibilidades:

- todas as faces vermelhas,
-todas as faces azuis,
- uma face vermelha,
- duas faces vermelhas (com uma aresta comum)
- duas faces vermelhas opostas (sem arestas comuns),
-três faces vermelhas ( duas delas opostas entre si),
-três faces vermelhas (não opostas),
- uma face azul,
- duas faces azuis (com uma aresta comum),
- duas faces azuis opostas (sem arestas comuns).

E o resultado se verifica.

Porém não consegui modelar matematicamente esse problema, no contexto da análise combinatória....
Gustavo Gomes
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Out 05, 2012 22:05
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática-Licenciatura
Andamento: formado

Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.