• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Trigonométrica] Dúvidas.

[Integral Trigonométrica] Dúvidas.

Mensagempor rafiusk » Dom Out 07, 2012 00:32

\int\frac x\sqrt{x^2+x+1}

Pessoal o que faço com essa integral? Como eu faço para simplificar o que está dentro da raiz? Tentei usar baskara e deu negativo dentro da raiz.
rafiusk
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Out 04, 2012 17:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Integral Trigonométrica] Dúvidas.

Mensagempor young_jedi » Dom Out 07, 2012 13:34

reescrevendo a integral

\int\frac{x}{\sqrt{x^2+x+\frac{1}{4}+\frac{3}{4}}}dx

\int\frac{x}{\sqrt{(x+\frac{1}{2})^2+\frac{3}{4}}}dx

fazendo

x+\frac{1}{2}=\sqrt{\frac{3}{4}}tg\theta

dx=\frac{\sqrt{3}}{2cos^2\theta}

então a integral fica

\int\frac{\frac{\sqrt{3}}{2}tg\theta-\frac{1}{2}}{\frac{\sqrt{3}}{2cos\theta}}\frac{\sqrt{3}}{2cos^2\theta}d\theta

\int\frac{\sqrt{3}}{2}\frac{sen\theta}{cos^2\theta}-\frac{1}{2}\frac{1}{cos\theta}d\theta

a primeira intgral se resolve por u.du a segunda existe na tabela d integrais
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral Trigonométrica] Dúvidas.

Mensagempor MarceloFantini » Dom Out 07, 2012 15:11

Se não me engano, para integrar secante você deve fazer \int \sec \theta \cdot \frac{\sec \theta + \tan \theta}{\sec \theta + \tan \theta} \, d \theta, daí u = \sec \theta + \tan \theta e du = \sec^2 \theta + \sec \theta \tan \theta \, d \theta.

A integral torna-se

\int \frac{du}{u} = \ln |u| + C = \ln |\sec \theta + \tan \theta| + C.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integral Trigonométrica] Dúvidas.

Mensagempor rafiusk » Dom Out 07, 2012 16:45

Pq da \frac{1}{4}   e      \frac{3}{4}? O que vc fez para achar isso?
rafiusk
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Out 04, 2012 17:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Integral Trigonométrica] Dúvidas.

Mensagempor young_jedi » Dom Out 07, 2012 17:17

Pq

\frac{1}{4}+\frac{3}{4}=1

então

x^2+x+\frac{1}{4}+\frac{3}{4}=x^2+x+1

e

\left(x+\frac{1}{2}\right)^2=x^2+x+\frac{1}{4}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral Trigonométrica] Dúvidas.

Mensagempor rafiusk » Dom Out 07, 2012 17:31

Vlw young eu nunca ia enxergar isso.
rafiusk
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Out 04, 2012 17:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}