• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Não consigo resolver esta inequação

Não consigo resolver esta inequação

Mensagempor sindorf » Dom Set 06, 2009 20:42

Não tenho idéia de como resolver esta inequação:

({x}^{2} - 5x + 6) . (x - 1) \geq 0
sindorf
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Set 06, 2009 20:23
Formação Escolar: ENSINO MÉDIO
Área/Curso: curso em informática
Andamento: cursando

Re: Não consigo resolver esta inequação

Mensagempor Marcampucio » Seg Set 07, 2009 00:04

sindorf escreveu:Não tenho idéia de como resolver esta inequação:

({x}^{2} - 5x + 6) . (x - 1) \geq 0


encontrando as raízes do trinomio do segundo grau escrevemos

\\({x}^{2} - 5x + 6) . (x - 1) \geq 0\\(x-1)(x-2)(x-3)\geq0

para que o produto acima seja positivo devemos ter uma combinação de sinais (+).(+).(+)\geq0 ou (+).(-).(-)\geq0

o quadro abaixo faz o estudo dos sinais

Imagem

vemos que o produto é positivo ou nulo para 1\leq x\leq 2 e x\geq3

visite: http://pir2.forumeiros.com/forum.htm



..
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)