por Marcos RS » Sex Set 04, 2009 00:46
Boa Noite!
Estou enfrentando dificuldades para encontrar uma função através de pontos matemáticos.
Os pontos referem-se a um projeto sobre enchentes em um rio, onde preciso fazer a co-relação de vazão (simulada) e nivel do rio (observado).
Evento-----Vazão Simulada------Nível Observado
---1-------------2262,17---------------19,86
---2-------------4593,71---------------24,51
---3-------------5128,9----------------26,25
---4-------------5415,75---------------26,65
Preciso encontrar a função que melhor represente esta relação (Com menor erro possivel na transformação de vazao em cota).
Alguém pode me Ajudar??
Desde já agradeço!!!!
-
Marcos RS
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Set 04, 2009 00:25
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Sistemas de INformação
- Andamento: cursando
por Elcioschin » Sex Set 04, 2009 09:27
Marco
Primeiramente algumas observações:
1) A quantidade de pontos é muito pequena para se obter uma equação precisa.
2) Entre os eventos 1 e 2 o "salto" é muito grande: a vazão dobra.
3) Entre os eventos 2 e 4 a variação é mais discreta.
4) Seria interessante obter mais pontos no intervalo 1-2 e antes do evento 1.
De qualquer modo, posso sugerir alguma coisa:
1) Do ponto de vista matemático podemos supor que seja uma curva do 2° grau, no intervalo considerado:
Q = a*x² + b*x + c ----> Q = vazão, x = nível ----> Aplicando esta equação para 3 dos 4 pontos:
2.262,17 = a*19,86² + b*19,86 + c
4.593,71 = a*24,51² + b*24,51 + c
5.128,90 = a*26,25² + b*26,25 + c
Resolvendo o sistema de 3 equações e 3 incógnitas, obtém-se os valores a, b, c e a equação suposta.
Depois é só testar para o 4° ponto (Evento 4) e ver se satisfaz com a precisão desejada.
Caso a precisão não seja a adequada pode-se tentar uma equação do 3° grau Q = a*x³ + b*x² + c*x + d.
2) Existem softwares matemátticos que acham esta equação, porém eu não conheço. Experimente o GEOGEBRA.
3) Do ponto de vista de Física, existe uma relação matemática entre a altura (pressão da coluna dágua) e a vazão. Portanto esta equação já é conhecida. Procure descobrí-la consultando algum estudante de engenharia ou engenheiro.
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por DanielFerreira » Dom Set 06, 2009 10:18
Olá Elcio,
o somatematica saiu do "ar"??
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Marcos RS » Ter Set 08, 2009 20:25
Vou tentar este software.
Muito obrigado pelo retorno.
-
Marcos RS
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Set 04, 2009 00:25
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Sistemas de INformação
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Encontrar ângulos] Aplicação matemática em uma fórmula
por vmouc » Qui Abr 19, 2012 14:09
- 1 Respostas
- 1960 Exibições
- Última mensagem por vmouc

Qui Abr 19, 2012 16:31
Sistemas de Equações
-
- [Derivada] Encontrar a função
por Aliocha Karamazov » Sex Nov 25, 2011 22:20
- 4 Respostas
- 3978 Exibições
- Última mensagem por Aliocha Karamazov

Sáb Nov 26, 2011 18:26
Cálculo: Limites, Derivadas e Integrais
-
- Encontrar limite de uma função
por vitor12x » Sáb Mai 21, 2016 18:58
- 3 Respostas
- 5757 Exibições
- Última mensagem por DanielFerreira

Dom Mai 22, 2016 14:23
Cálculo: Limites, Derivadas e Integrais
-
- Como encontrar a função inversa ?
por Dyego » Sex Mar 26, 2010 18:03
- 5 Respostas
- 7285 Exibições
- Última mensagem por Neperiano

Sex Set 24, 2010 14:42
Cálculo
-
- Encontrar Ponto A pela função ArcTangente
por nerabil » Seg Jan 03, 2011 21:03
- 4 Respostas
- 2697 Exibições
- Última mensagem por Renato_RJ

Ter Jan 11, 2011 15:47
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.