por flaaacs » Qua Out 03, 2012 16:02
Sejam r a reta de equacao y+x-1=0, s a reta que intercepta o eixo das coordenadas no ponto de ordenada y=-1 com r perpendicular a s e t a reta de equacao x-5y + 11=0. A area do triangulo delimitado pelas retas r,s e t é:
Resposta oficial: 6
-
flaaacs
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Out 03, 2012 15:58
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por young_jedi » Qua Out 03, 2012 16:16
se as retas r e s são perpendiculares então elas formam um angulo de 90º sendo assim, é um triangulo retangulo onde o angulo reto esta na intersecção das retas r e s, calculando a intersecção da reta t com as retas s e r, tem se os outros dois pontos que formam o triangulo, calculando a distancias destes dois pontos ate o angulo de 90º tem se a medida dos catetos e com isso da pra calcular a area do triangulo
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por flaaacs » Qua Out 03, 2012 16:53
Tentei achar as intersecções. Encontrei três pontos, mas acho que fiz errado. Encontrei r e s (2,-1) / s e t (-16,-1) / r e t (-1,2). Porém, fazendo os cálculos não acho a área correta. Acredito tbm que estou tendo dificuldade de visualizar o triângulo. Tem a possibilidade de efetuar os cálculos e talvez incluir o desenho, por favor?
-
flaaacs
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Out 03, 2012 15:58
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por young_jedi » Qua Out 03, 2012 17:25
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Área limitada pelas curvas
por Fernandobertolaccini » Qua Jul 23, 2014 22:02
- 0 Respostas
- 1050 Exibições
- Última mensagem por Fernandobertolaccini

Qua Jul 23, 2014 22:02
Cálculo: Limites, Derivadas e Integrais
-
- Área limitada pelas curvas
por Fernandobertolaccini » Qua Jul 23, 2014 22:04
- 1 Respostas
- 1362 Exibições
- Última mensagem por matmatco

Sáb Ago 09, 2014 12:15
Cálculo: Limites, Derivadas e Integrais
-
- Qual a razão da PG formada pelas medidas do triângulo
por andersontricordiano » Sex Mar 04, 2011 23:43
- 4 Respostas
- 3224 Exibições
- Última mensagem por Renato_RJ

Seg Mar 07, 2011 19:36
Progressões
-
- [Razão da área do triângulo para a área do quadrilátero]
por Mayra Luna » Sex Nov 23, 2012 20:17
- 2 Respostas
- 4239 Exibições
- Última mensagem por Mayra Luna

Ter Nov 27, 2012 14:53
Geometria Plana
-
- Retas formando triângulo
por Aline Bianca » Ter Ago 24, 2010 22:20
- 2 Respostas
- 1506 Exibições
- Última mensagem por Aline Bianca

Qua Ago 25, 2010 21:36
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.