por gramata » Qua Set 02, 2009 17:05
\documentclass[11pt,icelandic]{article}
\usepackage[icelandic]{babel}
\usepackage[latin1]{inputenc}
\usepackage[T1]{fontenc}
\selectlanguage{icelandic}
\author{Paulo Gramata}
\title{Skilaverkefni 2}
\usepackage{amssymb,amsmath,graphicx}
\begin{document}
\maketitle [3] Þrepun\\
11.
Skilgreinum fallið f með eftirfarandi rakningu:
\begin{align*}
f(1)=1\qquad og \qquad f(n)=\sum_{i=1}^{n-1}f(i)\qquad ef \qquad n>1 \\
\end{align*}
Lausn:
\begin{flushleft}
$f(2)=1=2^0$\\
$f(3)=1+1=2^1$\\
$f(4)=1+1+2=4=2^2$\\
$f(5)=1+1+2+4=8=2^3$\\
$f(6)=1+1+2+4+8=16=2^4$\\
$f(n)=2^{n-2}$\\
\end{flushleft}
\begin{equation*}
f(n)=2^0+2^1+2^2+2^3+2^4+\dots + 2^n\\*
\end{equation*}
Fyrir sonnun látum P(n) vera yrdinguna $F(n)=2^{n-2}$ þá gildir :\\
$P(2) : f(2)=2^0$\\
$P(3) : f(3)=2^1$\\
$P(4) : f(4)=2^2$\\
$P(5) : f(5)=2^3$\\
$f(n)=2^{n-2}$\\
(1). \\
P(2)er sönn þvi F(2)$=1=2^0$\\
Og $2^{n-2}=2^{2-2}=2^0$\\
Svo f(2)$=1$\\
(2).\\
Ef P(n) er sönn fyrir n>1 \\
þá er f(n)$=2^{n-2}$\\
P(n) : f(n) $=2^{n-2}$\\
P(n+1) : f(n+1) $=2^{n-2+1}$ \\*
F(n+1) $=2^{n-2+1} $ sem þýdir að P(n+1) er sönn.\\
Þvi er P(n) sönn fyrir öll $n\subset/N $\\
Samkvæmt þrepunar frumsendar////
\end{document}
-
gramata
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qua Set 02, 2009 16:10
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: licenciatura em Matemática
- Andamento: cursando
por DanielFerreira » Seg Set 28, 2009 10:22
??
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Pq será que não deu certo?
por Fernanda Lauton » Seg Jul 05, 2010 14:18
- 1 Respostas
- 1433 Exibições
- Última mensagem por Elcioschin

Seg Jul 05, 2010 15:06
Logaritmos
-
- Será que isto tá certo?
por ricardosanto » Sex Abr 27, 2012 15:06
- 3 Respostas
- 1911 Exibições
- Última mensagem por Russman

Sáb Abr 28, 2012 02:13
Cálculo: Limites, Derivadas e Integrais
-
- LOGARITIMO - SERA QUE ESTA CERTO ?
por lais1906 » Sáb Out 13, 2012 01:44
- 7 Respostas
- 8429 Exibições
- Última mensagem por MarceloFantini

Sáb Out 13, 2012 17:54
Logaritmos
-
- Será que é possivel dizer?
por sergiosilva » Qui Jan 06, 2011 19:47
- 2 Respostas
- 1386 Exibições
- Última mensagem por OtavioBonassi

Sex Jan 07, 2011 01:19
Funções
-
- Será que há um jeito mais fácil???
por rebeca_souza » Ter Dez 08, 2009 15:17
- 2 Respostas
- 1878 Exibições
- Última mensagem por rebeca_souza

Qua Dez 09, 2009 14:41
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.